Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Gravity-Powered Biomedical Device Paves Way for Low Cost POC Diagnostic Testing

By LabMedica International staff writers
Posted on 14 Jul 2023

The need for simple, user-friendly, point-of-care devices continues to exist. Many prototype and market-ready devices aim to simplify diagnosis and crucial biomarker measurement processes using minimal liquid samples, power, and professional knowledge. These innovations aim to enhance healthcare delivery for the vast population residing in low-resource locales, far from well-equipped hospitals and qualified medical personnel. These tests generally share certain prerequisites: they need to transport, combine, and assess minute biological sample-containing droplets and their active ingredients, enabling specific biomarker measurements. High-end devices employ miniature electric pumps to facilitate these reactions, while others leverage the dynamics of liquids within microchannels, or microfluidics, to produce a suction-like effect. Each method comes with its own distinct benefits and challenges. Now, researchers have demonstrated a first-of-its-kind approach that only uses gravity to power point-of-care biomedical devices and also offers certain advantages over currently existing platforms.

Biomedical engineers at Duke University (Durham, NC, USA) have devised a completely new approach for building point-of-care diagnostic tools, which only leverages gravity to transport, mix, and manipulate the liquid droplets involved. This proof-of-concept uses readily available materials and minimal power to interpret results, making it a potentially beneficial option for use in settings with limited resources. The innovative gravity-based technique is based on a selection of nine commercially available surface coatings that can fine-tune the wettability and slipperiness at any given point in the device, thereby controlling how much droplets spread into pancakes or remain spherical, while also influencing their ease of movement down an incline.

By using these surface coatings in smart combinations, all necessary microfluidic elements required for a point-of-care test can be generated. For instance, if a certain location is extremely slippery and a droplet is positioned at a juncture where one side pulls liquid flat and the other pushes it into a ball, it acts like a pump and accelerates the droplet toward the former. The scientists devised numerous elements to manage the motion, interaction, timing, and sequence of multiple droplets within the device. Merging these elements, they fabricated a prototype test to measure human serum lactate dehydrogenase (LDH) levels. They carved channels into the testing platform to create designated routes for droplet passage, each coated with a substance preventing droplets from sticking along the way. Specific points were also pre-treated with dried reagents needed for the test, which are absorbed by droplets of simple buffer solution as they traverse the channels.

The maze-like test is then sealed with a lid equipped with holes for the sample and buffer solution to be dripped in. Once filled, the test is inserted into a box-shaped device with a handle that rotates the test by 90 degrees, allowing gravity to take over. The device also features a simple LED and light detector for swift and easy color-based test result assessment. This enables the scientists to label three different biomarkers with distinct colors for varying tests. In the LDH prototype test, the biomarker is marked with a blue molecule. A basic microcontroller measures the depth of the blue tint and the rate of color change, signifying the quantity and concentration of LDH in the sample, to yield results. This novel demonstration presents a new approach to the development of affordable, low-energy, point-of-care diagnostic devices. While the team intends to further refine their concept, they also hope it will spark interest and lead to the creation of similar tests by other researchers.

“Most microfluidic devices need more than just capillary forces to operate,” said Ashutosh Chilkoti, the Alan L. Kaganov Distinguished Professor of Biomedical Engineering at Duke. “This approach is much simpler and also allows very complex fluid paths to be designed and operated, which is not easy or cheap to do with microfluidics.”

Related Links:
Duke University 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.