We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Noninvasive Cancer Diagnosis with a Contact Lens-based System that Collects and Analyses Tear Exosomes

By LabMedica International staff writers
Posted on 12 Aug 2022
Print article
Image: Researchers have developed a novel type of contact lens that can capture and analyze tears for the detection of exosomes, which have the potential for being diagnostic cancer biomarkers (Photo courtesy of Terasaki Institute for Biomedical Innovation)
Image: Researchers have developed a novel type of contact lens that can capture and analyze tears for the detection of exosomes, which have the potential for being diagnostic cancer biomarkers (Photo courtesy of Terasaki Institute for Biomedical Innovation)

A novel contact lens-based system for noninvasive cancer screening and diagnosis concentrates and analyzes exosomes shed by cancer cells into tears.

Exosomes are formed within most cells and secreted into many bodily fluids, such as plasma, saliva, urine, and tears. They are lipid-bilayer-enclosed structures, with sizes ranging from 30 to 5,000 nanometers. In the past decade, exosomes have emerged as important mediators of cell communication because they serve as vehicles for the intercellular transmission of biological signals (proteins or nucleic acids) capable of altering cell function and physiology. In addition, exosomes related to cancers have been reported to exist in tears.

The use of exosomes for clinical purposes has been hindered by difficulty in isolating them in sufficient quantity and purity. Current methods involve tedious and time-consuming ultracentrifuge and density gradient techniques, lasting at least ten hours to complete.

To overcome this shortcoming, investigators at Terasaki Institute for Biomedical Innovation (Los Angeles, CA, USA) developed a poly(2-hydroxyethyl methacrylate) contact lens embedded with antibody-conjugated signaling microchambers (ACSM-PCL) capable of detecting tear exosomes. Microchamber surfaces were chemically modified to activate them for antibody binding, and procedures were optimized for binding a capture antibody to the ACSM-CL microchambers and a different (positive control) detection antibody onto gold nanoparticles that could be visualized spectroscopically.

Results revealed that the ACSM-PCL could detect exosomes in the pH range of 6.5–7.4 (similar to the pH of human tears). In particular, the ACSM-PCL could detect exosomes in various solutions, including regular buffer, cell culture media from various cell lines, and human tears. Furthermore, the ACSM-PCL could differentiate expression of exosome surface proteins thought to be cancer biomarkers.

The ACSM-CL was tested against exosomes secreted into supernatants from ten different tissue and cancer cell lines. The ability to capture and detect exosomes was validated by the spectroscopic shifts observed in all the test samples, in comparison with the negative controls. Similar results were obtained when the ACSM-CL was tested against ten different tear samples collected from volunteers.

“Exosomes are a rich source of markers and biomolecules which can be targeted for several biomedical applications,” said senior author Dr. Ali Khademhosseini, director and CEO of Terasaki Institute for Biomedical Innovation. “The methodology that our team has developed greatly facilitates our ability to tap into this source.”

The contact lens system for capture of exosomes from tears was described in the August 10, 2022, online edition of the journal Advanced Functional Materials.

Related Links:
Terasaki Institute for Biomedical Innovation

 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The novel test uses an existing diagnostic procedure as its basis to target the Epstein Barr Virus (Photo courtesy of 123RF)

Blood Test Measures Immune Response to Epstein-Barr Virus in MS Patients

Multiple sclerosis (MS) is a chronic neurological condition for which there is currently no cure. It affects around three million people globally and ranks as the second most common cause of disability... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: Insulin proteins clumping together (Photo courtesy of Jacob Kæstel-Hansen)

AI Tool Detects Tiny Protein Clumps in Microscopy Images in Real-Time

Over 55 million individuals worldwide suffer from dementia-related diseases like Alzheimer's and Parkinson's. These conditions are caused by the clumping together of the smallest building blocks in the... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.