We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Lateral Flow Test Detects Bacteria Causing Gingivitis and Cardiovascular Diseases

By LabMedica International staff writers
Posted on 20 Oct 2023
Print article
Image: The new test can warn consumers about periodontal disease which can lead to heart diseases (Photo courtesy of University of Cincinnati)
Image: The new test can warn consumers about periodontal disease which can lead to heart diseases (Photo courtesy of University of Cincinnati)

Gingivitis, the initial stage of gum disease, is caused by bacteria that can make their way into the bloodstream and result in cardiovascular disease as well as other serious health conditions. A newly designed device now provides an early warning system for tooth decay that may result from conditions like gingivitis and periodontitis.

In order to develop the gingivitis test, engineers at the University of Cincinnati (Cincinnati, OH, USA) faced the challenge of creating a device capable of identifying the specific bacteria responsible for gingivitis. The researchers, who have been exploring biosensing for various applications, are focusing on saliva for point-of-care (POC) tests. Saliva is an ideal substance for testing since it's easy to collect and plentiful. However, saliva is also a complex mixture containing elements like proteins, peptides, DNA, and other compounds, each potentially signaling different health conditions, which makes isolating a particular biomarker for analysis difficult.

To resolve this issue, researchers pretreated the sample using potato starch to remove a protein called amylase that could interfere with the test results. Their point-of-care lateral flow assay (LFA) device uses antibodies that react to the endotoxins found in the bacteria. The team will undertake further development to improve assay sensitivity using saliva samples and explore its ability to detect multiple lipopolysaccharides (LPS) molecules related to diseases for more accurate diagnostics of patients' health. Finally, because the sensitivity of the current antibody-based detection is significantly affected by the performance of the conjugate antibody, the researchers will work on developing aptamer-based sandwich lateral flow assay for improved flexibility and performance.

“It’s been quite the challenge to get to the point where we can detect this toxin created by the bacteria responsible for gingivitis,” said Andrew Steckl, an Ohio Eminent Scholar and distinguished research professor in UC’s College of Engineering and Applied Science. “There are good reasons to use saliva. It’s relatively plentiful and easy to obtain through noninvasive methods. And saliva has a lot of important elements that can act as indicators of your health.”

Related Links:
University of Cincinnati 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Molecular Diagnostics

view channel
Image: Molecular PCR-grade detection of Lyme bacteria right at the tick bite (Photo courtesy of En Carta Diagnostics)

Groundbreaking Molecular Diagnostic Kit to Provide Lyme Disease Detection in Minutes

Lyme disease, transmitted through tick bites, is a bacteria-caused illness that impacts 1.2 million individuals annually. The standard methods for diagnosing this disease include clinical examinations,... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The novel test uses an existing diagnostic procedure as its basis to target the Epstein Barr Virus (Photo courtesy of 123RF)

Blood Test Measures Immune Response to Epstein-Barr Virus in MS Patients

Multiple sclerosis (MS) is a chronic neurological condition for which there is currently no cure. It affects around three million people globally and ranks as the second most common cause of disability... Read more

Pathology

view channel
Image: Insulin proteins clumping together (Photo courtesy of Jacob Kæstel-Hansen)

AI Tool Detects Tiny Protein Clumps in Microscopy Images in Real-Time

Over 55 million individuals worldwide suffer from dementia-related diseases like Alzheimer's and Parkinson's. These conditions are caused by the clumping together of the smallest building blocks in the... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.