Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




MD Mouse Model Used to Tweak Gene-Editing Protocols

By LabMedica International staff writers
Posted on 25 Mar 2019
Print article
Image: The lack of dystrophin, shown in red, in an unedited human heart muscle cell with DMD (left) and the restoration of dystrophin in a CRISPR-edited human heart muscle cell (right) (Photo courtesy of the University of Texas Southwestern Medical Center).
Image: The lack of dystrophin, shown in red, in an unedited human heart muscle cell with DMD (left) and the restoration of dystrophin in a CRISPR-edited human heart muscle cell (right) (Photo courtesy of the University of Texas Southwestern Medical Center).
A new mouse model of Duchenne muscular dystrophy (DMD) that carries the exon 44 deletion mutation was used to develop strategies for correction of this mutation employing CRISPR/Cas9 to edit surrounding exons, which restores the dystrophin open reading frame.

DMD is caused by mutations in the gene that encodes dystrophin, a protein crucial for maintaining muscle cell integrity and function, and the subsequent disruption of the dystrophin-associated protein complex (DAPC). There are more than 3000 different mutations in the X-chromosome-linked dystrophin gene, and the disease effects about one of every 3,500 boys whose functioning of cardiac and skeletal muscle is so degraded that they die usually before reaching the age of 30. The majority of DMD mutations are deletions that prematurely terminate the dystrophin protein. Development of a method to correct the exon 44 mutation would be expected to benefit about 12% of DMD patients.

CRISPR/Cas9 is regarded as the cutting edge of molecular biology technology. CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. Since 2013, the CRISPR/Cas9 system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs (sgRNAs) into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand. Efficient genome editing with Cas9-sgRNA in vivo has required the use of viral delivery systems, which limits some clinical applications.

Investigators at the University of Texas Southwestern Medical Center (Dallas, USA) crafted a simple and efficient strategy for correction of exon 44 deletion mutations by CRISPR/Cas9 gene editing in cardiomyocytes obtained from patient-derived induced pluripotent stem cells and in a new mouse model harboring the same deletion mutation.

The investigators used AAV9 (a harmless adeno-associated virus) to transport the Cas9 enzyme and single guide RNAs. Results reported in the March 6, 2019, online edition of the journal Science Advances demonstrated the importance of the dosages of these gene-editing components for optimal gene correction in vivo. The sgRNAs were found to be limiting for optimal gene editing in vivo and editing efficiency could be enhanced by about 10-fold by optimizing the dose of AAVs encoding Cas9 and sgRNAs.

"As we test CRISPR on other defective parts of the dystrophin gene, it may be important to tweak our formulas for optimal results," said senior author Dr. Eric N. Olson, professor of molecular biology at the University of Texas Southwestern Medical Center. "This new insight further facilitates the use of CRISPR as a therapy for Duchenne and perhaps a number of other diseases. We have more to do before we can use this clinically, but it is exciting to see how far we have come."

Related Links:
University of Texas Southwestern Medical Center

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Hemoglobin Testing System
VARIANTnbs

Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Molecular Diagnostics

view channel
Image: Molecular PCR-grade detection of Lyme bacteria right at the tick bite (Photo courtesy of En Carta Diagnostics)

Groundbreaking Molecular Diagnostic Kit to Provide Lyme Disease Detection in Minutes

Lyme disease, transmitted through tick bites, is a bacteria-caused illness that impacts 1.2 million individuals annually. The standard methods for diagnosing this disease include clinical examinations,... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The novel test uses an existing diagnostic procedure as its basis to target the Epstein Barr Virus (Photo courtesy of 123RF)

Blood Test Measures Immune Response to Epstein-Barr Virus in MS Patients

Multiple sclerosis (MS) is a chronic neurological condition for which there is currently no cure. It affects around three million people globally and ranks as the second most common cause of disability... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: Insulin proteins clumping together (Photo courtesy of Jacob Kæstel-Hansen)

AI Tool Detects Tiny Protein Clumps in Microscopy Images in Real-Time

Over 55 million individuals worldwide suffer from dementia-related diseases like Alzheimer's and Parkinson's. These conditions are caused by the clumping together of the smallest building blocks in the... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.