We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Protein Signatures in Blood Can Predict Risk of Developing More Than 60 Diseases

By LabMedica International staff writers
Posted on 23 Jul 2024
Print article
Image: Protein ‘signatures’ obtained via a blood sample can be used to predict the onset of 67 diseases (Photo courtesy of Queen Mary University of London)
Image: Protein ‘signatures’ obtained via a blood sample can be used to predict the onset of 67 diseases (Photo courtesy of Queen Mary University of London)

Measuring specific proteins to diagnose conditions like heart attacks, where troponin is tested, is a well-established clinical practice. Now, new research highlights the broader potential of protein measurements from a small blood sample to predict a variety of diseases.

In the research, published in Nature Medicine, which was carried out as part of an international partnership involving Queen Mary University of London (London, UK), the investigators used data from the UK Biobank Pharma Proteomics Project (UKB-PPP). This project represents the largest proteomic study to date, analyzing around 3,000 plasma proteins from over 40,000 randomly selected UK Biobank participants. These protein measurements are linked to detailed electronic health records. The researchers applied sophisticated analytical techniques to identify a specific 'signature' of 5 to 20 key proteins for predicting each disease. They discovered that these protein 'signatures' can predict the onset of 67 different diseases, including multiple myeloma, non-Hodgkin lymphoma, motor neuron disease, pulmonary fibrosis, and dilated cardiomyopathy.

The study found that protein prediction models outperformed the ones based on standard clinical information such as blood cell counts, cholesterol levels, kidney function, and diabetes indicators (glycated hemoglobin). While the benefits of measuring and discussing cardiovascular risks are well known, this research introduces new predictive possibilities for a broad spectrum of diseases, particularly rarer ones that often require prolonged periods to diagnose. These insights could lead to significantly faster and more timely diagnoses. However, these findings still need to be validated across different populations, including symptomatic and asymptomatic individuals, and across various ethnic groups.

“Several of our protein signatures performed similar or even better than proteins already trialed for their potential as screening tests, such a prostate-specific antigen for prostate cancer,” said Dr. Julia Carrasco Zanini Sanchez, first author and research student at GSK and the University of Cambridge at the time and now a postdoctoral researcher at PHURI. “We are therefore extremely excited about the opportunities that our protein signatures may have for earlier detection and ultimately improved prognosis for many diseases, including severe conditions such as multiple myeloma and idiopathic pulmonary fibrosis. We identified so many promising examples, the next step is to select high priority diseases and evaluate their proteomic prediction in a clinical setting.”

Related Links:
Queen Mary University of London

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Gold Member
Troponin T QC
Troponin T Quality Control
New
Silver Member
CEA Assay
Carcinoembryonic Antigen Assay
New
MRSA/SA Detection Kit
MRSA/SA ELITe MGB Kit

Print article

Channels

Immunology

view channel
Image: The blood test for fungal infections provides faster results and has a less invasive process (Photo courtesy of 123RF)

Blood Test for Fungal Infections Could End Invasive Tissue Biopsies

For individuals with weakened immune systems, common molds found in the environment—such as in the soil, on damp walls, or on forgotten fruits—can lead to severe infections deep within the body.... Read more

Microbiology

view channel
Image: RNA sequencing directly from whole blood aims to expand access to LRTI testing (Photo courtesy of CARB-X)

Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood

Pneumonia and lower-respiratory-tract infections (LRTIs) are among the top causes of illness and death globally, particularly in vulnerable populations such as the elderly, young children, and immunocompromised... Read more

Pathology

view channel
Image: The plasma cell dataset was created to assist in the accurate diagnosis (Photo courtesy of Shutterstock)

Novel Dataset of Plasma Cells to Aid Diagnosis of Multiple Myeloma

Myeloma is a rare blood cancer that originates in plasma cells, a type of immune cell responsible for producing antibodies that help fight infections. The disease begins when an abnormal plasma cell starts... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.