We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Microfluidic Device Rapidly Diagnoses Sepsis

By LabMedica International staff writers
Posted on 15 Aug 2019
Print article
Image: An MIT-invented microfluidics device could help doctors diagnose sepsis, a leading cause of death in US hospitals, by automatically detecting elevated levels of a sepsis biomarker in about 25 minutes, using less than a fingerprick of blood (Photo courtesy of Felice Frankel).
Image: An MIT-invented microfluidics device could help doctors diagnose sepsis, a leading cause of death in US hospitals, by automatically detecting elevated levels of a sepsis biomarker in about 25 minutes, using less than a fingerprick of blood (Photo courtesy of Felice Frankel).
Sepsis is a life-threatening condition and early diagnosis is crucial to ensure that treatment is not delayed. However, as current diagnostic methods are imprecise, the condition is misdiagnosed in 30% of patients.

It is estimated that, each year, sepsis affects over 30 million people around the world. Sepsis may also lead to around six million deaths each year. To prevent sepsis from evolving into septic shock, a complication that makes premature death more likely, doctors have to diagnose it early and act on it quickly. Yet current diagnostic methods are often symptomatic, combined with tests checking for general markers of infection or organ damage.

Bioengineers and their colleagues at Massachusetts Institute of Technology (Cambridge, MA, USA) have developed a microfluidics-based system that automatically detects clinically significant levels of interleukin-6 (IL-6) for sepsis diagnosis in about 25 minutes, using less than a finger prick of blood. In one microfluidic channel, microbeads laced with antibodies mix with a blood sample to capture the IL-6 biomarker. In another channel, only beads containing the biomarker attach to an electrode. Running voltage through the electrode produces an electrical signal for each biomarker-laced bead, which is then converted into the biomarker concentration level.

The device uses about 5 µL of blood, which is about a quarter the volume of blood drawn from a fingerprick and a fraction of the 100 µL required to detect protein biomarkers in laboratory-based assays. The device captures IL-6 concentrations as low as 16 pg/mL, which is below the concentrations that signal sepsis, meaning the device is sensitive enough to provide clinically relevant detection. This suggests that the device is very sensitive to the presence of key biomarkers. More importantly, the scientists argue that the innovative tool is highly adaptable and could be set to detect other sepsis biomarkers, such as interleukin-8, C-reactive protein, and procalcitonin, among others.

Dan Wu, a PhD student in the Department of Mechanical Engineering, and first author of the study said, “For an acute disease, such as sepsis, which progresses very rapidly and can be life-threatening, it’s helpful to have a system that rapidly measures these non-abundant biomarkers. You can also frequently monitor the disease as it progresses.” The study was presented at the Engineering in Medicine and Biology Conference held July 23-27, 2019, in Berlin, Germany.

Related Links:
Massachusetts Institute of Technology

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.