We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Advanced Imaging Method Maps Immune Cell Connections to Predict Cancer Patients Survival

By LabMedica International staff writers
Posted on 06 Nov 2024
Print article
Image: An immune response is initiated when an antigen-presenting cell (pink) presents foreign material to a T-cell (blue) (Photo courtesy of JAX)
Image: An immune response is initiated when an antigen-presenting cell (pink) presents foreign material to a T-cell (blue) (Photo courtesy of JAX)

A growing tumor is influenced not only by the tumor cells themselves but also by the surrounding tissue, which alters its biology. Immune cells communicate by transferring vital signaling proteins to their surfaces, creating physical 'synapses' between cells. This movement of resources from within the cell to its surface is essential for coordinating immune responses against pathogens and cancers. To explore the interactions of immune cells within the tumor microenvironment—the area surrounding a tumor—researchers typically isolate these immune cells to analyze the genes active in each cell type. Alternatively, they may apply fluorescent tags to specific proteins and use microscopy to visualize the abundance of those proteins based on fluorescence intensity. However, neither method reveals whether the proteins are located on the cell surface at a synapse, contributing to cell-to-cell interactions. A new combination of imaging and computational techniques has now been developed to study the connections between immune cells in breast cancer and melanoma.

Researchers at The Jackson Laboratory (JAX, Bar Harbor, ME, USA) began by utilizing existing microscopy data to examine how signaling molecules cluster at immune synapses, providing a more comprehensive understanding of immune cell interactions. They went on to integrate advanced imaging methods with a novel computational technique to investigate immune cell interactions in unprecedented detail, discovering that these interactions in the context of breast cancer or melanoma can help predict immune responses and patient outcomes. Notably, the research indicated that increased interactions between two specific types of immune cells correlated with longer survival in breast cancer patients.

The technique, known as Computational Immune Synapse Analysis (CISA), allows the research team to detect not only which cells within a tissue contact each other physically but also whether key molecules are concentrated at those contact points. The method analyzes immune cell images, emphasizing cell edges and potential immune synapses, and compares these to the localization of tagged molecules. By focusing on T cells, the researchers demonstrated that CISA could identify interactions between T cells and other immune cells within tumor microenvironments in human melanoma samples. Additional experiments indicated that synapses formed between T cells and macrophages—cells that engulf pathogens and tumor cells—were associated with increased T cell proliferation.

The researchers then assessed whether immune cell interactions in breast cancer samples influenced the progression of the cancer. Their findings, published in the advanced online issue of Communications Biology, revealed that stronger connections between T cells and B cells—another immune cell type—were linked to improved survival rates for patients. This insight could eventually facilitate new methods for predicting patient outcomes, selecting candidates for immune therapies, or even developing novel immunotherapies. Identifying significant patterns in cell interactions is the ultimate aim of CISA. The researchers have made this image analysis platform accessible online for other scientists and believe it could be utilized to analyze interactions between various cell types. Additionally, it is capable of processing different types of images; melanoma samples were examined using histocytometry, while breast cancer samples were analyzed using imaging mass cytometry (IMC). The team plans to extend their method to other tumor types and immune cell types to deepen their understanding of the tumor microenvironment and its effects on cancer.

“Researchers have long suspected that better characterizing this complex community, which includes immune cells, blood vessels, and signaling molecules, could shed light on how cancers grow, spread, and respond to treatment,” said Jeffrey Chuang, a professor at JAX and senior author of the new study. “This new analysis lets us quantify the locations and interactions of cells and molecules in a way that has never before been possible using imaging.”

Gold Member
Turnkey Packaging Solution
HLX
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Vibrio Cholerae O1/O139 Rapid Test
StrongStep Vibrio Cholerae O1/O139 Antigen Combo Rapid Test
New
FLU/RSV Test
Humasis FLU/RSV Combo

Print article

Channels

Clinical Chemistry

view channel
Image: Rapid and non-invasive analysis of paracetamol overdose using paper arrow-mass spectrometry (Photo courtesy of Dr Simon Maher/University of Liverpool)

New Saliva Test Rapidly Identifies Paracetamol Overdose

Paracetamol is the most widely used medication worldwide, and its easy availability contributes to its frequent misuse and overdose. Overdosing on paracetamol can lead to liver toxicity, requiring hospitalization.... Read more

Molecular Diagnostics

view channel
Image: The study found previously undetected cancers in pregnant women with abnormal prenatal cfDNA test results (Photo courtesy of NIH)

Abnormal Prenatal Blood Test Results Could Indicate Hidden Maternal Cancers

Researchers have discovered previously undiagnosed cancers in 48.6% of pregnant individuals who received abnormal results from prenatal cell-free DNA (cfDNA) testing, which is typically used to screen... Read more

Hematology

view channel
Image: RHD screening just got easier with single exon NIPT testing (Photo courtesy of Devyser)

Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma

RhD (rhesus D) is a blood group type that can trigger immune responses. Individuals who lack RhD on their red blood cells are classified as RhD-negative. These individuals may produce antibodies against... Read more

Microbiology

view channel
Image: A new test finds bacteria in liquids and indicate their presence by changing color (Photo courtesy of Georgia Kirkos/McMaster University)

New Hands-Free Rapid Test Detects Bacteria in Fluids

Bacteriophages, the most abundant form of life on Earth, are specialized to target and destroy specific types of bacteria. Their natural ability to fight bacteria has long been harnessed to treat infections.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.