We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App

AI Tool Predicts Cancer Patients’ Response to Immunotherapy

By LabMedica International staff writers
Posted on 05 Jun 2024
Print article
Image: The AI tool predicts whether someone’s cancer will respond to immune checkpoint inhibitors (Photo courtesy of National Cancer Institute)
Image: The AI tool predicts whether someone’s cancer will respond to immune checkpoint inhibitors (Photo courtesy of National Cancer Institute)

Immune checkpoint inhibitors are a form of immunotherapy drug that enables immune cells to target and destroy cancer cells. At present, the Food and Drug Administration has approved two predictive biomarkers for identifying patients who might benefit from immune checkpoint inhibitors. The first biomarker is tumor mutational burden, which measures the number of mutations in the DNA of cancer cells. The second biomarker is PD-L1, a protein found on tumor cells that inhibits the immune response and is targeted by some immune checkpoint inhibitors. However, these biomarkers are not always reliable in predicting a patient's response to immune checkpoint inhibitors. Recent machine-learning models utilizing molecular sequencing data have demonstrated potential in predicting responses, but this data is costly and not routinely collected. Researchers have now created an artificial intelligence (AI) tool that uses standard clinical data, such as results from a basic blood test, to predict if a patient’s cancer will respond to immune checkpoint inhibitors.

The machine-learning model, named Logistic Regression-Based Immunotherapy-Response Score (LORIS), was developed by scientists at the National Cancer Institute (Bethesda, MD, USA). It aims to assist doctors in determining the efficacy of immunotherapy drugs for a patient's cancer treatment. The AI model bases its predictions on five clinical features routinely collected from patients: age, cancer type, history of systemic therapy, blood albumin level, and blood neutrophil-to-lymphocyte ratio, an indicator of inflammation. The model also considers tumor mutational burden, evaluated through sequencing panels.

This model was built and validated using data from multiple independent datasets comprising 2,881 patients treated with immune checkpoint inhibitors across 18 types of solid tumors. The model accurately predicted both a patient’s likelihood of responding to an immune checkpoint inhibitor and their overall survival time, including the period before disease recurrence. Remarkably, the model also identified patients with low tumor mutational burden who could still benefit from immunotherapy. The findings of the study were published in Nature Cancer on June 3, 2024. The researchers emphasized the need for larger prospective studies to further validate the AI model in clinical settings and have made it publicly accessible. 

Related Links:
National Cancer Institute

Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Dengue Virus Test

Print article


Clinical Chemistry

view channel
Image: The new DxC 500i Clinical Analyzer is an integrated clinical chemistry and immunoassay analyzer (Photo courtesy of Beckman Coulter Diagnostics)

Integrated Chemistry and Immunoassay Analyzer with Extensive Assay Menu Offers Flexibility, Scalability and Data Commutability

As global healthcare systems increasingly shift towards networked laboratory operational models to enhance efficiency and patient access, there is a greater need for innovative solutions tailored to the... Read more


view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more


view channel
Image: The Simplexa C. auris direct kit is a real-time polymerase chain reaction assay run on the LIAISON MDX instrument (Photo courtesy of Diasorin)

Novel Molecular Test to Help Prevent and Control Multi Drug-Resistant Fungal Pathogen in Healthcare Settings

Candida auris (C. auris) is a rapidly emerging multi drug-resistant fungal pathogen that is commonly found in healthcare environments, where it presents a challenge due to its ability to asymptomatically... Read more


view channel
Image: Color-enhanced scanning electron micrograph showing Salmonella Typhimurium (red) invading cultured human cells (Photo courtesy of Rocky Mountain Laboratories, NIAID, NIH)

AI Identifies Drug-Resistant Typhoid-Like Infection from Microscopy Images within Hours

Antimicrobial resistance is becoming a serious global health concern, making many infections increasingly difficult to treat and limiting available treatment options. This escalation in resistance raises... Read more


view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.