We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Non-Invasive Imaging Detects Cancer at Molecular Level

By LabMedica International staff writers
Posted on 20 Aug 2019
Print article
Image: Scientists combined multiphoton microscopy with automated image and statistical analysis algorithms to distinguish between healthy and diseased tissue. In this image, collected in a completely label-free, noninvasive manner, collagen is colored green while ovarian metastatic cell clusters are presented in red (Photo courtesy of Tufts University).
Image: Scientists combined multiphoton microscopy with automated image and statistical analysis algorithms to distinguish between healthy and diseased tissue. In this image, collected in a completely label-free, noninvasive manner, collagen is colored green while ovarian metastatic cell clusters are presented in red (Photo courtesy of Tufts University).
For cancer patients the presence of metastases dictates the staging assessment, which in turn defines the appropriate treatment path selected. For gynecological malignancies, like ovarian carcinoma, it is of immense importance to differentiate between localized and metastatic disease status as that drastically affects management.

For in situ, real time diagnosis, novel imaging modalities that offer metabolic and structural information at the cellular and subcellular level can be of great help, especially since these modalities are being progressively incorporated in probes and micro-endoscopes that allow intra-vital access to organs that lie deeper in the body.

Biomedical scientists at Tufts University (Medford, MA, USA) and their colleagues collected samples from eight patients who underwent open laparotomy as part of routine medical care. Post completion of all intra-abdominal procedures of the operation, eight biopsies of healthy parietal peritoneum and if present of four peritoneal metastases were collected from each patient. All lesions were evaluated by a pathologist using standard hematoxylin and eosin histology.

The tissues were imaged employing a multiphoton laser scanning microscope to generate intrinsic fluorescence and second harmonic generation (SHG) images at 755 nm and 900 nm excitation respectively with signal emission collected at 460 ± 20 and 525 ± 25 nm. Laser light was focused on the sample using a 25x objective (0.9 NA / water-immersion), and neutral density filters were employed to achieve a power of 25–35 mW. At least two to three random fields per tissue were evaluated, reaching a total of 30 and 11 images for the healthy and metastatic biopsy tissue groups, respectively (512 × 512 pixels; 600-micron field of view; resolution of 1.17 microns per pixel). Imaging was focused within a depth of ∼20-100 microns from the mesothelial surface of the tissues.

The team found that healthy tissues displayed large variations in contrast and correlation features as a function of distance, corresponding to repetitive, increased local intensity fluctuations. Metastatic tissue images exhibited decreased contrast and correlation related values, representing more uniform intensity patterns and smaller fibers, indicating the destruction of the healthy stroma by the cancerous infiltration. Analyzing 41 images acquired from the biopsies, the technique correctly classified 40 out of 41 images (an accuracy of 97.5%). A total of 11 samples were correctly classified as metastatic (100% sensitivity) and 29 of 30 were correctly classified as healthy (96.6% specificity).

Dimitra Pouli, MD, PhD, a Pathology Resident and co-author of the study, said, “The method utilized in this work identifies in a completely label-free manner cellular and tissue features at the microscopic level, essentially acting like a biopsy without a knife,” The study was published in the August 2019 issue of the journal Biomedical Optics Express.

Related Links:
Tufts University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.