We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics - An LGC Company

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Lab-on-a-Chip Technology Detects Hard-to-Diagnose Diseases

By LabMedica International staff writers
Posted on 13 May 2022
Print article
Image: Lab-on-a-chip technology enables rapid testing for various human ailments (Photo courtesy of University of Kansas)
Image: Lab-on-a-chip technology enables rapid testing for various human ailments (Photo courtesy of University of Kansas)

A new technology takes small plastic chips made of the same material as a compact disc or DVD, then transforms them into marvels of engineering and chemistry that quickly can detect hard-to-diagnose human diseases using saliva, urine or blood from a patient. The liquid biopsies can detect circulating tumor cells, cell-free DNA, viruses and vesicles that are released by biological cells associated with a particular disease.

The technology developed at the Center of BioModular Multi-Scale Systems for Precision Medicine, dubbed CBM2, a research center based at the University of Kansas (Lawrence, KS, USA), is pushing forward the boundaries of precision medicine, improving and extending the lives of patients, and creating commercialization partnerships as well as new training and education opportunities. CBM2 recently earned USD 6.6 million in continued funding over the next five years from the National Institutes of Health's National Institute of Biomedical Imaging and Bioengineering (NIBIB) as a National Biotechnology Resource (P41) Center.

Much of the work of CBM2 takes place in collaboration with partners. For instance, researchers at CBM2 are working to develop a handheld instrument to spot viruses giving rise to COVID-19 and to detect ovarian cancer early in women with a high family risk. This kind of cancer detection uses a few blood drops placed on a plastic chip created by the center to look for very small vesicles - the presence of which indicates early stage of cancer that will provide better survival compared to current diagnostic methods. The medical advances developed at CBM2 already are helping patients through commercial partnerships with private firms, and some of these products already are in use to improve outcomes of cancer patients.

Additionally, CBM2 is working on clinical trials to evaluate new therapeutics for pancreatic cancer, which accounts for 7% of cancer deaths across the U.S. The circulating tumor cells are secured from a blood sample using a plastic microchip. Other important research initiatives include a project on a test using small vesicles as markers for a point-of-care test for diagnosing ischemic stroke. The test can be completed in about 30 minutes to help decide how best to treat patients with stroke. In another effort, CBM2 is developing a new nanotechnology platform for sequencing RNA and DNA to detect changes to the RNA genome of viruses that give rise to variants, such as those associated with COVID-19.

“We develop little USD 2 widgets made from a plastic by injection molding that can take a liquid biopsy sample and search for different types of markers that can help a physician manage disease,” said CBM2 director Steven Soper. “To give you an example, this little chip is used to isolate tumor cells out of the blood of cancer patients. A physician will take a sample of blood from the patient, put it into the chip to enrich the tumor cells from the blood sample - there's very few of them, maybe about 10 or so - and then we open those cells to look at the genetic composition to help decide: does the patient have a disease, how to treat the disease, is the patient responding to therapy?”

Related Links:
University of Kansas

Gold Supplier
ESR Analyzer
3-DIFF Hematology Analyzer
Chemistry Analyzer
Gold Supplier
Automatic Biochemistry Analyzer
Biossays C8

Print article


Clinical Chem.

view channel
Image: The analysis pipeline used to investigate associations between blood metabolites, later life brain imaging measures, and genetic risk for Alzheimer’s disease (Photo courtesy of University College London)

Lipid Measurements Show Potential as Alzheimer’s Disease Biomarkers

Brain changes accompanying ageing are varied and can include pathologies that lead to cognitive impairment, the commonest of which is Alzheimer’s disease (AD). Identifying blood-based signatures of brain... Read more


view channel
Image: The CS-2500 analyzer features pre-analytic sample checks and four detection methods simultaneously on a single platform – coagulation end-point, chromogenic kinetic analysis, turbidimetric immunoassay and automated platelet aggregation (Photo courtesy of Sysmex)

Microvascular/Endothelial Dysfunction Contributes to Post-COVID Syndrome Pathogenesis

Post-COVID syndrome (PCS) or Long-COVID is an increasingly recognized complication of acute SARS-CoV-2 infection, characterized by persistent fatigue, reduced exercise tolerance chest pain, shortness of... Read more


view channel
Image: Sales of lateral flow assays in clinical testing are expected to register a CAGR of 5% through 2032 (Photo courtesy of Pexels)

Global Lateral Flow Assays Market to Surpass USD 11.5 Billion by 2032 Due to Evolving Applications

The global lateral flow assays market was valued at USD 7.2 billion in 2021 and is projected to register a CAGR of 4.7% during 2022-2032 to surpass USD 11.7 billion by the end of 2032, driven by the growing... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.