We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Abbott Diagnostics

Download Mobile App




Biodegradable Plastic Implants for Blood Vessel Repair

By LabMedica International staff writers
Posted on 12 May 2015
Print article
Image: Gross examination of an explanted TPU conduit after six months shows a white shiny inner surface without evidence of clot formation (Photo courtesy of Medical University of Vienna).
Image: Gross examination of an explanted TPU conduit after six months shows a white shiny inner surface without evidence of clot formation (Photo courtesy of Medical University of Vienna).
A new generation of artificial blood vessels gradually degrades as it is replaced by endogenous tissue that restores full biological function.

Investigators at Vienna University of Technology and Vienna Medical University worked with a type of biodegradable plastic known as thermoplastic polyurethane (TPU), which displays the adequate biomechanical strength and wall structure needed to promote rapid host remodeling.

In a study conducted on a group of 34 rats they investigated the in vitro and in vivo biocompatibility of thin host-vessel-matched grafts formed from hard-block biodegradable TPU. Expanded polytetrafluoroethylene (ePTFE) conduits served as control grafts in 34 other rats. Grafts were analyzed by various techniques after retrieval at different time points (one week; 1, 6, 12 months).

Results published in the January 1, 2015, issue of the journal Acta Biomaterialia revealed that TPU grafts showed significantly increased endothelial cell proliferation in vitro. Population by host cells increased significantly in the TPU conduits within one month of implantation. After long-term implantation, all the TPU implants, but only 93% of the ePTFE conduits, were expanded and unblocked with no signs of aneurysmal dilatation. Substantial remodeling of the degradable grafts was observed but varied between subjects. Intimal hyperplasia was found in 29% of the ePTFE conduits but not in the TPU implants.

First author Dr. Helga Bergmeister, professor of surgery at Vienna Medical University, said, "The rats' blood vessels were examined six months after insertion of the vascular prostheses. We did not find any aneurysms, thromboses or inflammation. Endogenous cells had colonized the vascular prostheses and turned the artificial constructs into natural body tissue."

Related Links:

Vienna University of Technology  
Vienna Medical University



Print article
BIOHIT  Healthcare OY

Channels

Industry News

view channel
Image: Randox and Bosch Healthcare Collaboratively Combat COVID-19 with Game-Changing Partnership (Photo courtesy of Randox Laboratories)

Randox and Bosch Healthcare Collaboratively Combat COVID-19 with Game-Changing Partnership

The game-changing partnership between Randox Laboratories (Crumlin, UK) and Bosch Healthcare (Waiblingen, Germany) continues to alter the testing landscape and capabilities of both laboratory and non-laboratory... Read more
Copyright © 2000-2020 Globetech Media. All rights reserved.