We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics

Download Mobile App




Biodegradable Plastic Implants for Blood Vessel Repair

By LabMedica International staff writers
Posted on 12 May 2015
Print article
Image: Gross examination of an explanted TPU conduit after six months shows a white shiny inner surface without evidence of clot formation (Photo courtesy of Medical University of Vienna).
Image: Gross examination of an explanted TPU conduit after six months shows a white shiny inner surface without evidence of clot formation (Photo courtesy of Medical University of Vienna).
A new generation of artificial blood vessels gradually degrades as it is replaced by endogenous tissue that restores full biological function.

Investigators at Vienna University of Technology and Vienna Medical University worked with a type of biodegradable plastic known as thermoplastic polyurethane (TPU), which displays the adequate biomechanical strength and wall structure needed to promote rapid host remodeling.

In a study conducted on a group of 34 rats they investigated the in vitro and in vivo biocompatibility of thin host-vessel-matched grafts formed from hard-block biodegradable TPU. Expanded polytetrafluoroethylene (ePTFE) conduits served as control grafts in 34 other rats. Grafts were analyzed by various techniques after retrieval at different time points (one week; 1, 6, 12 months).

Results published in the January 1, 2015, issue of the journal Acta Biomaterialia revealed that TPU grafts showed significantly increased endothelial cell proliferation in vitro. Population by host cells increased significantly in the TPU conduits within one month of implantation. After long-term implantation, all the TPU implants, but only 93% of the ePTFE conduits, were expanded and unblocked with no signs of aneurysmal dilatation. Substantial remodeling of the degradable grafts was observed but varied between subjects. Intimal hyperplasia was found in 29% of the ePTFE conduits but not in the TPU implants.

First author Dr. Helga Bergmeister, professor of surgery at Vienna Medical University, said, "The rats' blood vessels were examined six months after insertion of the vascular prostheses. We did not find any aneurysms, thromboses or inflammation. Endogenous cells had colonized the vascular prostheses and turned the artificial constructs into natural body tissue."

Related Links:

Vienna University of Technology  
Vienna Medical University


Gold Supplier
Molecular & Immunoassay Diagnostic Analyzer
Randox Discovery
New
Direct-to-PCR Workflow for SARS-COV-2 Detection
Direct to PCR SARS-COV-2 Solution
New
Single Channel Pipette
AHN pipet4u pro
New
Silver Supplier
SARS-CoV-2 IgG Antibody Test
Epithod AutoDx SARS-CoV-2 IgG

Print article

Channels

Clinical Chem.

view channel
VIASURE HLA Celiac Real Time PCR Detection Kit

CerTest VIASURE HLA Celiac RT PCR Kit Enables Rapid Resolution of HLA Haplotypes Associated with Celiac Disease

CerTest Biotec (Zaragoza, Spain) has developed a simple and ready to use real-time PCR for the detection of the principal alleles of the HLA system and the subsequent determination of the DQ2 and DQ8 antigens... Read more

Immunology

view channel
Illustration

First-Of-Its Kind Blood Test to Distinguish between Bacterial and Viral Infections Using Body’s Immune Response Granted FDA Clearance

A first-of-its kind test that decodes the immune response to accurately distinguish between bacterial or viral infections within minutes has been granted clearance by the US Food and Drug Administration (FDA).... Read more

Pathology

view channel
Image: The CellSearch Circulating Tumor Cell Kit is intended for the enumeration of circulating tumor cells of epithelial origin (CD45-, EpCAM+, and cytokeratins 8, 18+, and/or 19+ and PD-L1) in whole blood (Photo courtesy of CellSearch/Menarini Silicon Biosystems)

PD-L1 Expression in Circulating Tumor Cells Investigated for NSCLC

In non-small cell lung cancer (NSCLC), analysis of programmed cell death ligand 1 (PD-L1) expression in circulating tumor cells (CTCs) is a potential alternative to overcome the problems linked to the... Read more

Industry

view channel
Illustration

Thermo Fisher Launches World’s First Fully Integrated Digital PCR (dPCR) System

Thermo Fisher Scientific Inc. (Waltham, MA, USA) has launched the world’s first fully integrated digital PCR (dPCR) system designed to provide highly accurate and consistent results within 90 minutes.... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.