We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Conditions in the Tumor Microenvironment Change Role of p53

By LabMedica International staff writers
Posted on 09 Aug 2018
Print article
Image: The effects of p53 in cancer-associated fibroblasts on cancer cell migration: Cancer cells (magenta) migrate in the direction of cancer-associated fibroblasts (yellow) that express a non-mutated p53 gene (left); this migration slows down (center) when the p53 in the fibroblasts is silenced; when substances released by the cancer-associated fibroblasts are added to the laboratory dish, the migration is restored (right) (Photo courtesy of the Weizmann Institute of Science).
Image: The effects of p53 in cancer-associated fibroblasts on cancer cell migration: Cancer cells (magenta) migrate in the direction of cancer-associated fibroblasts (yellow) that express a non-mutated p53 gene (left); this migration slows down (center) when the p53 in the fibroblasts is silenced; when substances released by the cancer-associated fibroblasts are added to the laboratory dish, the migration is restored (right) (Photo courtesy of the Weizmann Institute of Science).
Cancer researchers have found that changes occurring in the tumor microenvironment manipulate the activity of fibroblast p53 protein, causing it to promote rather than restrict cancer growth.

Cancer cells coexist with noncancerous adjacent cells that constitute the tumor microenvironment and impact tumor growth through diverse mechanisms. In particular, cancer-associated fibroblasts (CAFs) promote tumor progression in multiple ways. Earlier studies have revealed that in in contrast to the situation in CAFs, p53 in normal fibroblasts (NFs) plays a tumor-suppressive role to restrict tumor growth.

Investigators at the Weizmann Institute of Science (Rehovot, Israel) set out to study the role of p53 in CAFs. To carry out this research, they used a combination of cell culture and a cancer-carrying mouse model.

The investigators reported in the June 19, 2018, issue of the journal Proceedings of the National Academy of Sciences of the United States of America that the transcriptional program supported by p53 was altered substantially in CAFs relative to NFs. In agreement, the secretion of proteins dependent on p53 was also altered in CAFs. This transcriptional rewiring rendered p53 a significant contributor to the distinct intrinsic features of CAFs, as well as promoted tumor cell migration and invasion in culture.

The ability of CAFs to promote tumor growth in mice was greatly compromised by depletion of their endogenous p53. Furthermore, co-cultivation of NFs with cancer cells partially rendered their p53-dependent transcriptome to be more similar to that of CAFs.

The investigators concluded by saying, "Our findings raise the intriguing possibility that tumor progression may entail a nonmutational conversion (“education”) of stromal p53, from tumor suppressive to tumor supportive."

Related Links:
Weizmann Institute of Science

Gold Supplier
NEW PRODUCT : SILICONE WASHING MACHINE TRAY COVER WITH VICOLAB SILICONE NET VICOLAB®
REGISTRED 682.9
New
Modular Syndromic Testing System
QIAstat-Dx (DiagCORE) Analyzer
New
Automated Urinalysis Solution
DxU Iris Workcell
New
Microplate Reader
Sunrise

Print article

Channels

Hematology

view channel
Image: Psoriatic plaques, showing a silvery center surrounded by a reddened border (Photo courtesy of Jane Bianchi, BA)

Hematological Parameters Compared in Psoriasis Patients

Psoriasis is a chronic, immune-mediated disorder that can involve the skin and/or joints. Four clinical types of psoriasis are currently recognized: psoriasis vulgaris (PsV), pustular psoriasis (PP), erythrodermic... Read more

Microbiology

view channel
Illustration

Sysmex Inostics Launches New Ultra-Sensitive Leukemia Blood Test for Early Detection of Cancer Cells Following Initial Therapy

Sysmex Inostics (Baltimore, MD, USA) has developed a new CLIA-validated liquid biopsy test for the detection of Minimal Residual Disease (MRD) in Acute Myeloid Leukemia (AML) to better help in the fight... Read more

Technology

view channel
Image: QIAreach QuantiFERON-TB (Photo courtesy of QIAGEN N.V.)

Qiagen Launches Novel Tuberculosis Blood Test That Marks Quantum Leap from Traditional TB Skin Test

QIAGEN N.V. (Venlo, Netherlands) has announced the launch and CE marking of QIAreach QuantiFERON-TB test for tuberculosis (TB) infection, in order to help achieve global TB elimination targets by increasing... Read more

Industry

view channel
Image: GastroPanel Quick Test (Photo courtesy of Biohit Healthcare)

Biohit’s Innovative GastroPanel Quick Test Receives CE Mark

Biohit Healthcare’s (Helsinki, Finland) GastroPanel Quick Test, the latest innovation in its unique GastroPanel product family, is now CE marked. The GastroPanel Quick Test is intended for diagnosing... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.