We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Revolutionary Transistor Could Allow Wearable Devices to Measure Sodium and Potassium in Blood

By LabMedica International staff writers
Posted on 23 Jan 2023
Print article
Image: The vertical electrochemical transistor is based on a new kind of electronic polymer and a vertical, instead of planar architecture (Photo courtesy of Northwestern University)
Image: The vertical electrochemical transistor is based on a new kind of electronic polymer and a vertical, instead of planar architecture (Photo courtesy of Northwestern University)

Researchers have developed a revolutionary transistor that could be suitable for lightweight, flexible, high-performance bioelectronics. The electrochemical transistor is compatible with blood and water and can amplify important signals, paving the way for its application in biomedical sensing. The transistor could allow for the use of wearable devices for onsite signal processing, right at the biology-device interface. Some of its likely applications could be for measuring heartbeat and the levels of sodium and potassium in blood, as well as eye motion in studies of sleep disorders.

The vertical electrochemical transistor developed by a transdisciplinary research team at Northwestern University (Evanston, IL, USA) is based on a new kind of electronic polymer and a vertical, instead of planar, architecture. The transistor conducts electricity as well as ions, and is stable in air. The design and synthesis of the new materials, and the fabrication and characterization of the transistor was made possible by the collaborative expertise of chemists, materials scientists and biomedical engineers in the research team.

In order to make electronic circuits more reliable and powerful, there is a need for two types of transistors: p-type transistors that carry positive charges and n-type transistors that carry negative charges. These types of circuits are called complementary circuits. In the past, researchers have faced a challenge in building n-type transistors which are also typically unstable. The work by the transdisciplinary research team is the first to demonstrate electrochemical transistors with similar and very high performance for both types (p+n) of electrochemical transistors. This helped the researchers fabricate highly efficient electrochemical complementary circuits.

“All modern electronics use transistors, which rapidly turn current on and off,” said Tobin J. Marks, a co-corresponding author of the study. “Here we use chemistry to enhance the switching. Our electrochemical transistor takes performance to a totally new level. You have all the properties of a conventional transistor but far higher transconductance (a measure of the amplification it can deliver), ultra-stable cycling of the switching properties, a small footprint that can enable high density integration, and easy, low-cost fabrication.”

“This exciting new type of transistor allows us to speak the language of both biological systems, which often communicate via ionic signaling, and electronic systems, which communicate with electrons,” said Jonathan Rivnay, professor of biomedical engineering at the McCormick School. “The ability of the transistors to work very efficiently as ‘mixed conductors’ makes them attractive for bioelectronic diagnostics and therapies.”

Related Links:
Northwestern University 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.