We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

SYSMEX-EUROPA

Sysmex Europe designs and produces laboratory and hematology diagnostic solutions, including instruments, reagents, c... read more Featured Products: More products

Download Mobile App




Novel Digital Morphology Analyzer Performance Evaluated

By LabMedica International staff writers
Posted on 01 Dec 2022
Print article
Image: The CellaVision DC-1 is a stand-alone hematology analyzer that performs blood cell differentials. It offers a suitable solution for laboratories with small workloads (Photo courtesy of Sysmex)
Image: The CellaVision DC-1 is a stand-alone hematology analyzer that performs blood cell differentials. It offers a suitable solution for laboratories with small workloads (Photo courtesy of Sysmex)

Microscopic examination of peripheral blood smear (PBS) is essential in clinical hematology laboratories. Manual counting is, however, inefficient because the process is technically demanding and labor-intensive resulting in long turnaround time (TAT), and the results may be subjective with inter-observer variation.

Digital morphology (DM) analyzers can provide analysis of cell morphology (pre-classification) with reduced TAT and inter-observer variation. In a recent study, DM analyzers showed advantages over manual counting in laboratory efficiency including shortened TAT. DM analyzers can be used mainly in large-volume laboratories, and they are too large and expensive to be used in small to medium-volume laboratories.

Medical Laboratory Scientists at the Konkuk University School of Medicine (Seoul, Korea) obtained PBS slides from healthy individuals, spanning normal white blood cell (WBC) range including mild leukopenia (2.0–4.0 × 109/L) and mild leukocytosis (10.0–15.0 × 109/L). WBC counts in these samples were 3.90 × 109/L, 5.19 × 109/L, 6.72 × 109/L, 8.72 × 109/L, and 10.78 × 109/L, respectively. Venous whole blood samples were collected and were used for complete blood counts in XN-9000 (Sysmex, Kobe, Japan), and PBS slides were made and reviewed for WBC differentials.

The Sysmex CellaVision DC-1 (DC1) is a newly launched digital morphology analyzer that was developed mainly for small to medium-volume laboratories. The scientists evaluated the precision, qualitative performance, comparison of cell counts between DC-1 and manual counting, and turnaround time (TAT) of DC-1. Pre-classification on DC-1 included total 18 cell classes (12 WBC classes and six non-WBC classes). The 12 WBC classes include blasts, promyelocytes, myelocytes, metamyelocytes, band neutrophils, segmented neutrophils, lymphocytes, monocytes, eosinophils, basophils, variant lymphocytes, and plasma cells. The six non-WBC classes include nucleated RBCs (nRBCs), smudge cells, artifact, giant platelet, platelet aggregation, and unidentified cells.

The investigators reported that DC-1 showed excellent precision (%CV, 0.0%–3.5%), high specificity (98.9%–100.0%), and high negative predictive value (98.4%–100.0%) in 18 cell classes (12 WBC classes and six non-WBC classes). However, DC-1 showed 0% of positive predictive value in seven cell classes (metamyelocytes, myelocytes, promyelocytes, blasts, plasma cells, nucleated red blood cells, and unidentified). The largest absolute mean differences (%) of DC-1 versus manual counting was 2.74. Total TAT (min:s) was comparable between DC-1 (8:55) and manual counting (8:55).

The authors concluded that their study showed that DC-1 has a reliable analytical performance in all cell classes, and it can be used in small-to medium-volume laboratories for providing assist of manpower in daily practice of PBS review. However, DC-1 may make unnecessary workload for cell verification in some cell classes. The study was published on October 31, 2022 in the journal Clinical Chemistry and Laboratory Medicine.

Related Links:
Konkuk University School of Medicine
Sysmex

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: AI analysis of DNA fragmentomes and protein biomarkers noninvasively detects ovarian cancer (Photo courtesy of Adobe Stock)

Blood-Based Machine Learning Assay Noninvasively Detects Ovarian Cancer

Ovarian cancer is one of the most common causes of cancer deaths among women and has a five-year survival rate of around 50%. The disease is particularly lethal because it often doesn't cause symptoms... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Pathology

view channel
Image: The device can serve as a sample pretreatment tool for cytological diagnosis of malignant effusions (Photo courtesy of Microsystems & Nanoengineering: Zhu, Z., Ren, H., Wu, D. et al.)

Microfluidic Device for Cancer Detection Precisely Separates Tumor Entities

Tumor cell clusters are increasingly recognized as crucial in cancer pathophysiology, with growing evidence of their increased resistance to treatment and higher metastatic potential compared to single tumor cells.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.