We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Myelodysplastic Syndrome Diagnosed With Peripheral Blood Samples

By LabMedica International staff writers
Posted on 14 Nov 2022
Print article
Image: Gating strategy for quantifying peripheral blood neutrophil myeloperoxidase expression (Photo courtesy of Grenoble University Hospital)
Image: Gating strategy for quantifying peripheral blood neutrophil myeloperoxidase expression (Photo courtesy of Grenoble University Hospital)

Myelodysplastic syndromes (MDS) encompass a heterogeneous group of clonal bone marrow neoplasms, with a median age at diagnosis of 70 years. MDS are characterized by recurrent cytogenetic and molecular abnormalities, morphologic dysplasia for one or more hematopoietic cell lineage and ineffective hematopoiesis.

Cytomorphological evaluation of bone marrow is the reference standard for the diagnosis of MDS and may be complemented by information obtained from conventional cytogenetic, flow cytometry and molecular profiling analysis. Peripheral blood neutrophil myeloperoxidase expression quantified by flow cytometric analysis has the potential to rule out MDS without requiring invasive bone marrow aspiration.

A large team of hematopathologists at the Grenoble Alpes University Hospital (Grenoble, France) and their colleagues are evaluating a cross-sectional diagnostic accuracy study of two index tests by comparison with a reference standard in consecutive unselected adult patients conducted at a single university hospital. The team evaluated a hypothesis that a flow cytometry-based method involving a single-use tube containing lyophilized reagents will provide the accuracy needed to reject a diagnosis of MDS by analysis of peripheral blood neutrophil myeloperoxidase expression, in addition to other hypotheses.

The study examined an approach involving a product called Lyotube Stain 468 (BD Biosciences, San Jose, CA, USA), compared with an approach using a laboratory-developed liquid reagent-based test, in evaluating possible MDS. The Lyotube Stain 468 product includes dried reagents associated with five fluorochromes, while the laboratory-developed test uses liquid reagents associated with the same fluorochromes. With both approaches, an anti-myeloperoxidase antibody is applied to samples, and myeloperoxidase expression from peripheral blood neutrophils is measured. The team used a BD Biosciences three-laser, eight-color BD FACSCanto-II flow cytometer. The primary outcome is the reference diagnosis of MDS or CMML established by bone marrow examination by two independent experienced hematopathologists blinded to the index test results.

The investigators identified the strengths of this study to include the use of an adequate reference approach to MDS diagnosis, limited spectrum bias owing to enrollment of unselected consecutive patients, and a prespecified threshold for evaluation of diagnostic accuracy. Limitations of the study that they identified include the single-center nature of the study setting, in addition to conventional cytogenetic and molecular profiling approaches not being available to all patients in the study. The study was published in the November 2022 issue of the journal BMJ Open.

Related Links:
Grenoble Alpes University Hospital
BD Biosciences

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: AI analysis of DNA fragmentomes and protein biomarkers noninvasively detects ovarian cancer (Photo courtesy of Adobe Stock)

Blood-Based Machine Learning Assay Noninvasively Detects Ovarian Cancer

Ovarian cancer is one of the most common causes of cancer deaths among women and has a five-year survival rate of around 50%. The disease is particularly lethal because it often doesn't cause symptoms... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Pathology

view channel
Image: The device can serve as a sample pretreatment tool for cytological diagnosis of malignant effusions (Photo courtesy of Microsystems & Nanoengineering: Zhu, Z., Ren, H., Wu, D. et al.)

Microfluidic Device for Cancer Detection Precisely Separates Tumor Entities

Tumor cell clusters are increasingly recognized as crucial in cancer pathophysiology, with growing evidence of their increased resistance to treatment and higher metastatic potential compared to single tumor cells.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.