We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Assay Uses Novel Method for Early Detection of Ovarian Cancer

By LabMedica International staff writers
Posted on 05 Jul 2022
Print article
Image: New data demonstrates promise of novel extracellular vesicle biomarker-based approach for early cancer detection (Photo courtesy of Mercy BioAnalytics)
Image: New data demonstrates promise of novel extracellular vesicle biomarker-based approach for early cancer detection (Photo courtesy of Mercy BioAnalytics)

High-grade serious ovarian cancer (HGSOC) is the most aggressive of all ovarian cancers and accounts for up to 70% of all ovarian cancer cases. Nearly 50% of ovarian cancer is detected at stage III or stage IV with poor survival outcomes. Current surveillance methods, including CA125, a current standard of care for ovarian cancer diagnosis, and ultrasound, are not effective enough at detecting early-stage disease. Emerging methods for early cancer detection rely primarily on tumor DNA circulating in blood (ctDNA), which is scarce in early-stage cancers, costly to measure, and not reliably obtained from tumors that are not well vascularized. Now, an assay that uses a novel method of analyzing biomarkers based on individual extracellular vesicles (EVs) has substantially outperformed CA125 when distinguishing patients with early-stage HGSOC from women with benign conditions in a new study.

Mercy BioAnalytics, Inc.’s (Natick, MA, USA) novel Mercy Halo technology enables simultaneous detection of multiple cancer-related biomarkers co-localized on the surface of individual tumor-derived extracellular vesicles, which are abundant in circulation and can be readily measured. The Mercy Halo OC assay is designed to detect stage I/II ovarian cancer and to distinguish cancer from benign conditions.

The study found that the Mercy Halo OC assay displayed separation of HGSOC from benign adnexal masses and healthy controls that was superior to CA125. When run against a variety of off-target cancers and inflammatory conditions, it discriminated them from ovarian cancer in most instances When run in paired serum and plasma samples, the Mercy Halo OC assay had highly correlated signals with virtually no bias, indicating that it can be validated further in established blood biorepositories, which offers the potential to accelerate clinical study and development.

“These preliminary data suggest this approach may detect all stages of ovarian cancer with high sensitivity at a very high specificity and works equally well in both plasma and serum. Mercy’s assay shows promise in improving on CA125 by distinguishing stage I/II cancer from benign ovarian tumors and could have clinical utility for both early detection and surgical referral recommendation for benign and malignant ovarian tumors,” said Christine D. Berg, M.D., retired Chief, Early Detection Research Group, National Institutes of Health.

“Too many women today suffer, and ultimately lose their lives, as a result of the late detection of ovarian cancer. We are encouraged by the data of our most recent study comparing the Mercy Halo Ovarian Cancer assay to CA125 in detecting early-stage ovarian cancer and distinguishing it from benign disease,” said Paul Blavin, Chief Executive Officer of Mercy BioAnalytics. “Our unique approach, focused on co-localization to interrogate single extracellular vesicles, has important advantages over current early cancer detection methods, and our work thus far has fueled our passion for relieving suffering and saving lives through the early detection of cancer. We look forward to expanding our studies of the Mercy Halo Ovarian Cancer assay to include average risk, asymptomatic women who might benefit from an improved ovarian cancer screening paradigm.”

Related Links:
Mercy BioAnalytics, Inc. 

Gold Supplier
SARS-CoV-2 Antigen Rapid Test
RapiSafe SARS-CoV-2 Antigen Rapid Test (Professional use)
New
Hemoglobin A1c Control
HbA1c (Auto)
New
HPLC System
Jasper HPLC System
New
RT-PCR Enzymes and Kits
QuantiNova Pathogen +IC Kit

Print article
IIR Middle East

Channels

Molecular Diagnostics

view channel
Image: Special blood test could determine if patient has early stage breast cancer and if the cancer is unlikely to return (Photo courtesy of USC)

Simple Blood Draw Could Revolutionize Early Breast Cancer Detection

Breast cancer is the most prevalent form of cancer in the world, affecting one in eight women over their lifetime. Since 1976 when the American Cancer Society endorsed mammography X-rays, the technique... Read more

Industry

view channel
Image: The global infectious disease IVD market is expected to hit USD 57 billion by 2030 (Photo courtesy of Pexels)

Global Infectious Disease IVD Market Dominated by Molecular Diagnostics Technology

The global infectious disease in vitro diagnostics (IVD) market stood at USD 113.7 billion in 2021 and is expected to grow at a CAGR of -7.41% from 2022 to 2030 to hit around USD 56.89 billion by 2030,... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.