We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Blood Test Could Predict Future Risk of Developing Leukemia

By LabMedica International staff writers
Posted on 06 Jul 2022
Print article
Image: A blood test could predict risk of developing leukemia in elderly years in advance (Photo courtesy of University of Glasgow)
Image: A blood test could predict risk of developing leukemia in elderly years in advance (Photo courtesy of University of Glasgow)

Leukemia is often the result of the disruption to the fine balance in blood cell production where new cells are manufactured and old blood cells die. Now, a blood test could predict risk of developing leukemia in the elderly population years in advance by identifying changes in blood cell production, according to new research. By identifying those most at risk it should be possible to provide preventive or early treatment in the future to improve patient outcomes, experts say.

As we age, mutations in blood stem cells can mean that the altered cells can have a growth benefit over other blood cells and outnumber them in what is referred to as fitness advantage. Researchers from the University of Edinburgh (Scotland, UK) and University of Glasgow (Scotland, UK) investigated how changes in fitness advantage that occur in blood production might provide clues to risk of developing leukemia depending on the type of mutation that occurs.

The researchers measured changes in the blood samples of 83 older individuals of the Lothian Birth Cohorts, taken every three years over a 12-year period. The Lothian Birth Cohorts 1921 and 1936 are longitudinal studies of brain, cognitive and general ageing which have followed up individuals every three years between the ages of 70 and 82 for the 1921 cohort and the ages of 79 to 92 for 1936. The team then combined these complex genomic data with a machine-learning algorithm to link different mutations with different growth speeds of blood stem cells carrying these mutations.

The researchers found that specific mutations give distinct fitness advantages to stem cells measured in people without leukemia - this can then be used to forecast how quickly the mutated cells will grow, which determines leukemia risk. Further research is needed to validate these results in a larger population due to the limited sample size in the current study, according to the researchers.

“In knowing an individual patient’s risk of developing leukemia, clinicians can schedule shorter gaps between appointments in those most likely to develop the disease and provide early treatment, which is more likely to be successful,” said Dr. Kristina Kirschner, co-lead author and Senior Lecturer at University of Glasgow’s Institute of Cancer Sciences.

“To understand leukemia risk, we need to consider the balance between the different cells involved in blood cell production and how this balance changes as we grow older. By linking genomic data with machine learning we have been able to predict the future behaviour of blood cells based on the mutations they develop,” added Dr. Linus Schumacher, co-lead author and Chancellor’s Fellow at the Centre for Regenerative Medicine of the University of Edinburgh.

Related Links:
University of Edinburgh 
University of Glasgow 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.