We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

New Method Detects Different Types of Dangerous Viruses or Disease Markers from Single Measurement

By LabMedica International staff writers
Posted on 23 May 2022
Print article
Image: Graphene device chip attached to an electrical connector with two 5 μL HCVcAg samples (Photo courtesy of Swansea University)
Image: Graphene device chip attached to an electrical connector with two 5 μL HCVcAg samples (Photo courtesy of Swansea University)

For many parts of the world that do not have access to high-tech labs found in hospitals, detecting viruses such as hepatitis C (HCV) – could save millions of preventable deaths worldwide. Now, scientists have developed a method to detect viruses in very small volumes. The work follows a successful Innovate UK project developing graphene for use in biosensors – devices that can detect tiny levels of disease markers. Biosensors such as this could be used at the point-of-care - opening effective healthcare in difficult-to-reach settings.

What makes the detection of viruses in such small volumes possible is the use of a material called graphene. Graphene is extremely thin - only one atom thick - making it very sensitive to anything that attaches to it. By carefully controlling its surface, scientists at Swansea University (Swansea, UK) were able to make the surface of graphene sensitive to the HCV virus. In the future, it is hoped that multiple biosensors can be developed onto a single chip – this could be used to detect different types of dangerous viruses or disease markers from a single measurement.

“Highly sensitive and simplistic sensors have never been more in demand with regards point-of-care applications,” said Ffion Walters, Innovation Technologist at Swansea University’s Healthcare Technology Centre. “This collaborative project has allowed us to realise proof-of-concept real-time sensors for HCV, which could be especially beneficial in resource-limited settings or for difficult-to-reach populations.”

“At Swansea University, we have now developed graphene-based biosensors for both Hepatitis B and C. This is a major step forward to a future single point of care test,” added Professor Owen Guy, Head of Chemistry at Swansea University.

Related Links:
Swansea University 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The cobas Malaria test is the first FDA-approved molecular test to screen U.S. blood donors for malaria (Photo courtesy of Roche)

First FDA-Approved Molecular Test to Screen Blood Donors for Malaria Could Improve Patient Safety

Malaria, a serious illness that often leads to death, is spread by a specific mosquito species that infect humans with a parasite. Other transmission modes include blood transfusions, organ transplants,... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The medical office procedure detects the key biomarker in Parkinson’s and related neurodegenerative diseases (Photo courtesy of BIDMC)

Simple Skin Biopsy Test Detects Parkinson’s and Related Neurodegenerative Diseases

Parkinson's disease and a group of related neurodegenerative disorders known as synucleinopathies impact millions globally. These conditions, including Parkinson’s disease (PD), dementia with Lewy bodies... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.