We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Sciex

SCIEX develops and sells scientific instrumentation, software, and services for the life science, clinical research, ... read more Featured Products: More products

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Proteins Linked to COVID-19-Associated Inflammatory Syndromes

By LabMedica International staff writers
Posted on 10 May 2022
Print article
Image: TripleTOF 6600+ System optimized for large-scale quantitative mass spectrometry and offers sensitive and robust quantitation using dedicated low flow source technology (Photo courtesy of Sciex)
Image: TripleTOF 6600+ System optimized for large-scale quantitative mass spectrometry and offers sensitive and robust quantitation using dedicated low flow source technology (Photo courtesy of Sciex)

COVID-19 associated acute respiratory distress syndrome (COVID-19 ARDS) is one of the major manifestations of the severe cases, characterized by hypoxemic respiratory failure with bilateral lung infiltrate, as well as multi-organ dysfunction and extensive microthrombus formation.

A minority of children with COVID-19 present with an unexplained multisystem inflammatory syndrome termed ‘multisystem inflammatory syndrome in children’ or MIS-C, also known as the Pediatric Multisystem Inflammatory Syndrome Temporally associated with SARS-CoV-2. Signs of MIS-C manifested 2 to 4 weeks after the SARS-CoV-2 infection, showing similar clinical features to Kawasaki disease and toxic shock syndrome.

A large team of Clinical Scientists at the Murdoch Children’s Research Institute (Melbourne, Australia) and their colleagues characterized the underlying mechanisms associated with severe COVID-19 phenotypes in children (MIS-C and COVID-19 ARDS) and how their plasma proteomic pathways differ from healthy children. Blood samples from SARS-CoV-2 infected children with MIS-C or COVID-19 ARDS were collected from children at the Necker–Enfants Malades Hospital (Paris, France) in 2020. Blood samples from healthy children were collected, processed and stored at −80 °C prior to the COVID-19 pandemic.

Mass Spectrometry proteomics to determine the plasma proteins expressed in healthy children pre-pandemic, children with multisystem inflammatory syndrome (MIS-C) and children with COVID-19 induced ARDS. Information Dependent Acquisition and SWATH Acquisition using a 6600 TripleTOF mass spectrometer (Sciex, Framingham, MA, USA) coupled to an Eksigent Ultra-nanoLC-1D system (Eksigent Technologies, Dublin, CA, USA) was employed for both IDA and SWATH-MS analysis.

The scientists uncovered 76 proteins that were differentially expressed across the groups as well as 85 proteins that were specific to MIS-C and 52 specific to ARDS. These protein sets highlighted the roles of the complement activation and coagulation pathways in both inflammatory syndromes as well as suggested the involvement of Fcγ receptor and B-cell receptor activation in MIS-C as well as heme scavenging and retinoid metabolism in COVID-19-related ARDS.

The authors conclude that they had observed complement activation and coagulation dysregulation in children with MIS-C and COVID-ARDS with additional contribution of FcGR and BCR activation in MIS-C and they suggest the scavenging of haem and retinoid metabolism in COVID-19 ARDS. The study was published on May 2, 2022 in the journal Nature Communications.

Related Links:
Murdoch Children’s Research Institute 
Necker–Enfants Malades Hospital 
Sciex 
Eksigent Technologies 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.