We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App





Novel Platform Detects Coronavirus Particles with “Slow Light”

By LabMedica International staff writers
Posted on 22 Apr 2022
Print article
Image: Novel detection platform performs label-free imaging of virus particles by slowing down light (Photo courtesy of CDC)
Image: Novel detection platform performs label-free imaging of virus particles by slowing down light (Photo courtesy of CDC)

Existing methods for detecting and diagnosing COVID-19 are either expensive and complex or inaccurate. Now, scientists have developed a novel biosensing platform to detect and quantify viral particles using a simple optical microscope and antibody proteins. Their versatile approach, based on slowing down light, could pave the way to new diagnostic tools and next-generation detection platforms that are fast, accurate, and low-cost.

Scientists at the Gwangju Institute of Science and Technology (GIST, Gwangju, Korea) have developed a new technique to easily visualize viruses using an optical microscope. A key element of their detection platform, called the Gires-Tournois immunoassay platform (GTIP), is the Gires-Tournois "resonance structure," a film made from three stacked layers of specific materials that produce a peculiar optical phenomenon called "slow light." Because of how incident light rebounds inside the resonant layers before being reflected, the color of the platform seen through an optical microscope appears very uniform. However, nanometer-sized virus particles affect the resonance frequency of GTIP in their immediate vicinity by slowing down the light that gets reflected around them. The "slow light" manifests as a vivid color change in the reflected light so that, when viewed through the microscope, the virus particle clusters look like "islands" of a different color compared to the background.

To ensure that their system only detects coronavirus particles, the researchers coated the top layer of GTIP with antibody proteins specific to SARS-CoV-2. Interestingly, not only did the system enable the detection of viral particles, but, by using colorimetric analysis techniques, the researchers could even effectively quantify the number of virus particles present in different areas of a sample depending on the color of the light reflected locally. The overall simplicity of the design is one of the main selling points of GTIP. Given that optical microscopes are available in most laboratories, the method developed by the group could become a valuable and ubiquitous diagnostic and virus research tool. Furthermore, GTIP is not limited to detecting viruses or strictly dependent on antibodies; any other binding agent works as well, helping visualize all kinds of particles that interact with light.

"Compared to existing COVID-19 diagnostic methods, our approach enables rapid detection and quantification of SARS-CoV-2 without needing extra sample treatments, such as amplification and labeling," explained Professor Young Min Song at GIST who led the research group. "Our strategy can even be applied for a dynamic monitoring of target particles sprayed in the air or dispersed on surfaces. We believe that this approach could be the basis for next-generation biosensing platforms, enabling simple yet accurate detection."

Related Links:
GIST 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.