We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

THERMO FISHER SCIENTIFIC

Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Biomarker Panel for Risk of Early Respiratory Failure Following Hematopoietic Cell Transplantation

By LabMedica International staff writers
Posted on 23 Mar 2022
Print article
Image: The Orbitrap Fusion Mass Spectrometer was used to identify the biomarker panel for risk of early respiratory failure following hematopoietic cell transplantation (Photo courtesy of Thermo Fisher Scientific)
Image: The Orbitrap Fusion Mass Spectrometer was used to identify the biomarker panel for risk of early respiratory failure following hematopoietic cell transplantation (Photo courtesy of Thermo Fisher Scientific)

Allogeneic hematopoietic cell transplantation (HCT) is a life-saving therapy used for malignant and nonmalignant diseases. However, post-HCT pulmonary complications continue to be a significant problem. When severe, pulmonary complications can result in respiratory failure (RF), affecting 10% to 23% of patients.

Currently, there is no simple blood test to guide the susceptibility to RF in the HCT recipient. Although some candidate proteomic biomarkers have been studied in the general adult population to predict the severity and mortality associated with acute respiratory distress syndrome (ARDS), little data exist on biomarkers that can predict the development of RF, particularly in children.

A team of Pediatricians and other scientists from several institutes worked with those at Riley Hospital for Children (Indianapolis, IN, USA) included in a study four cohorts (discovery, training, validation, and independent) of patients post-HCT. The team sought to identify novel biomarkers for RF, through a well-established quantitative tandem mass spectrometry–based proteomics discovery approach developed in their laboratory, by comparing plasma pooled from 15 patients with RF within 100 days post-HCT with plasma pooled from 15 patients without RF.

The scientists analyzed the samples with an Orbitrap Fusion mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) and compared plasma obtained at day 14 post-HCT from 15 patients with RF and 15 patients without RF. Six candidate proteins, from this discovery cohort or identified in the literature, were measured by enzyme-linked immunosorbent assay in day-7 and day-14 post-HCT samples from the training (n = 213) and validation (n = 119) cohorts.

The investigators reported that of the six markers, Stimulation-2 (ST2), WAP 4-disulfide core domain protein 2 (WFDC2), interleukin-6 (IL-6), and tumor necrosis factor receptor 1 (TNFR1), measured at day 14 post-HCT, had the most significant association with an increased risk for RF in the training cohort: ST2: hazard ratio [HR], 4.5; WFDC2: HR, 4.2, IL-6: HR, 6.9; and TFNR1: HR, 6.1; and in the validation cohort: ST2: HR, 23.2) ; WFDC2: HR, 18.2; IL-6: HR, 12.2; and TFNR1: HR, 16.1; after adjusting for the conditioning regimen. Using cause-specific landmark analyses, including days 7 and 14, high plasma levels of ST2, WFDC2, IL-6, and TNFR1 were associated with an increased HR for RF in the training and validation cohorts. These biomarkers were also predictive of mortality from RF. ST2, WFDC2, IL-6 and TNFR1 levels measured early post-transplantation improve risk stratification for RF and its related mortality.

The authors concluded that high levels of ST2, WFDC2, IL-6, and TNFR1 measured as early as day 7 post-HCT are associated with the development of RF within the first 100 days post-HCT and with mortality with RF. These biomarkers offer objective data to begin to identify the highest-risk patients who may benefit from early intervention; they may also hold promise for therapeutic targets to alter the course and outcome of RF. The study was published on March 17, 2022 in the journal Blood Advances.

Related Links:
Riley Hospital for Children 
Thermo Fisher Scientific 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.