We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Automating Blood Smears Developed for Easier Malaria Diagnosis

By LabMedica International staff writers
Posted on 03 Feb 2022
Print article
Image: (a) 3D-rendered exploded view of autohaem smear showing the non-3D printed parts. (b) Photo of an autohaem smear showing the assembled device with the two microscope slides in their positions (Photo courtesy of Cambridge University)
Image: (a) 3D-rendered exploded view of autohaem smear showing the non-3D printed parts. (b) Photo of an autohaem smear showing the assembled device with the two microscope slides in their positions (Photo courtesy of Cambridge University)
Blood smears are used in diagnosis for a variety of hematological disorders, such as anemia and leukemia. They are also the preferred method of diagnosis of parasitic infections, such as malaria and filariasis in developing world laboratories.

The current “gold standard” for malaria diagnosis is by optical microscopy examination of blood smears. A thin film of the patients’ bloods is fixed onto a microscope slide and stained. The microscopists look at the smear, counting the parasites in various fields of view. These experts can establish the species of malaria and parasite density.

Bioengineers at Cambridge University (Cambridge, UK) collaborating with their colleagues in Tanzania and the UK created a series of devices, which they call “autohaem.” Autohaem devices aim at enabling even non-experts to produce consistent, high quality, thin film blood smears at low cost. The autohaem devices, solves this problem by automating the smearing process so every smear is correct and consistent. The devices come in two varieties, the autohaem smear and the autohaem smear+, the latter of which is fully automated with a motorized smearing mechanism. In tests, inexperienced technicians were able to use the device to produce expert-quality smears.

A key goal of the project was to make the devices accessible to as many people as possible, so the scientists designed their devices to be easy to build, using readily available or 3D-printed components. A pipeline for automated analysis of smear quality was presented and used for device optimization. Red Blood Cells (RBCs), at the typical hematocrit for malaria investigations, are used as the testing media. This pipeline will also be suitable for a more systematic analysis of blood smear preparation, for example, to help with training and evaluation of technicians.

Samuel McDermott, PhD, the senior author of the study, said, “Creating blood smears is a laborious, repetitive task that requires an expert level of skill and manual dexterity. By using automated blood smearing machines, such as autohaem devices, technicians will be able to increase their throughput while maintaining a high enough quality for diagnosis. In some countries, up to 81.5% of blood smears are prepared incorrectly. If a blood smear is prepared incorrectly, when examined under a microscope, the technician will struggle to make a correct diagnosis. Because these smears are often made in a rural clinic and sent to a regional facility for examination, any issues in the smear could cause days of delay.”

The authors concluded that they have developed and presented the autohaem range of devices for automated blood smearing. Autohaem smear is a mechanical device, and autohaem smear+ is an electro-mechanical device. The devices are designed to be sustainable and all the designs and assembly instructions are available under an open source license. The study was published on January 18, 2022, in the journal Review of Scientific Instruments.

Related Links:
Cambridge University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.