We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App





New Rapid Test Simultaneously Diagnoses COVID-19 Infection and Predicts Disease Course

By LabMedica International staff writers
Posted on 25 Jan 2022
Print article
Image: New rapid test simultaneously diagnoses COVID-19 infection and predicts disease course (Photo courtesy of Paul Scherrer Institute/Mahir Dzambegovic)
Image: New rapid test simultaneously diagnoses COVID-19 infection and predicts disease course (Photo courtesy of Paul Scherrer Institute/Mahir Dzambegovic)

Researchers have developed a COVID-19 rapid test based on a novel functional principle that promises reliable and quantifiable results concerning a patient's disease and its course.

The test developed by researchers at the Paul Scherrer Institute (PSI; Switzerland) and the University of Basel (Basel, Switzerland) can also provide evidence concerning other diseases and COVID variants that may be present. Before it can go into widespread use, however, it still must undergo further testing and optimization.

A major shortcoming of rapid antigen tests is their lack of reliability. The tests only say whether the subject has the infection or not. They do not provide any insight into the course of the infection or the immune reaction of the test subjects. The new test developed at PSI - which, unlike antigen tests, does not directly detect components of the virus, but rather the antibodies the immune system produces in response to the infection - promises to bring substantially more predictive power to rapid testing. It is just as inexpensive, quick, and easy to use, and it can also be used to simultaneously identify a variety of pathogens, such as those responsible for the flu.

The central building block of the test is a small rectangular plate of ordinary Plexiglas, similar to a microscope slide. It consists of a lower layer which is one millimeter thick, and an upper layer with a thickness of 0.2 millimeters. The researchers patterned a relief in the lower part using electron beam lithography - an extremely precise process for milling solid materials used, for example, in the manufacturing of computer chips. Once the master template was produced in this way, the researchers combined this with so-called nanoimprint lithography, which significantly speeds up the fabrication process and reduces its cost.

With the thinner layer of Plexiglas as a cover, the plate now has three parallel channels through which a fluid can flow from one end to the other. Each of these is 300 micrometers (0.3 millimeter) wide and 3.4 micrometer high at the inlet. At the outlet, the channels are five times as wide but only one micrometer high. Along a stretch in between, the channel narrows to just a few micrometers wide, and at one point it is only 0.8 micrometer high - roughly 100 times thinner than human hair. This ensures a strong capillary effect, like the familiar action of the conduit tissues that transport water from the roots to the crowns of trees. No pump is required. The force results from the interfacial tension between the liquid and the solid surface. It virtually sucks the water through the narrow passages. Precisely the same thing happens with the channels in the Plexiglas - except that instead of water, a droplet of blood flows through it.

What is crucial for the test is a passage in which the height of the channel drops from 3.4 micrometers to 0.8. In what the researchers call the capture region, particles previously added to the blood get stuck at predefined locations - depending on which pathogens are present in the blood. For the test, a subject would go to a doctor or a test centre. There, a little drop of blood is taken with a prick of the finger, as in a blood sugar test. A liquid in which special artificial nanoparticles are suspended is mixed into the blood. Their surface has the same structure as the notorious spike proteins of the Sars-CoV-2 virus, which human antibodies dock to when fighting the disease.

In addition, small fluorescent particles are added that attach themselves to Sars-CoV-2 antibodies in humans. This means that if there are antibodies against Sars-CoV-2 in the blood being tested, the fluorescent particles first attach themselves to them; together they then bind to the virus-like structures of the significantly larger nanoparticles and get stuck, along with them, in the predefined places corresponding to the diameter of the nanoparticles. Here the nanoparticles accumulate, with the human antibodies and their glowing appendages docked to them. If the plate is placed under a fluorescence microscope, the light signal is visible. The more antibodies the patient has formed, the brighter it is; the clearer the signal, the stronger the immune reaction. This is how COVID-19 can be clearly diagnosed. There is no risk of the channel becoming blocked by other particles in the blood. The viruses themselves are only around 0.12 micrometre in size and flow through without resistance. Only the red blood cells next to the nanoparticles are larger than the narrowest part of the channel.

The test opens up even more possibilities beyond diagnosing COVID-19. In addition, nanoparticles of different sizes and with different surface structures could be mixed into the blood to enable simultaneous testing for other diseases. In the study, the researchers did this using particles whose surface corresponds to influenza A viruses. In the experiments, two spots in the capture region lit up: one for COVID-19 and one for the flu. In addition, it is possible to identify different antibodies that the immune system produces in different stages of the disease. For example, one could use green fluorescent particles that only attach to antibodies that appear in the early phase of the infection, and red fluorescent particles for antibodies that are produced by the immune system at later stages. Additionally, the test should become even easier to carry out.

"We're working on making it just as easy to do with saliva instead of blood," said Thomas Mortelmans, a doctoral candidate at the Swiss Nanoscience Institute of the University of Basel and first author of the study. "We also want to be able to use a mobile phone camera instead of a microscope to read the signals. Modern devices are now capable of doing this."

"Our vision is a technology with which we can simultaneously diagnose several diseases and variants of COVID and flu reliably, quickly, and inexpensively via mobile phone. Our novel concept is capable of making this a reality," added Yasin Ekinci, head of the Laboratory for X-ray Nanoscience and Technologies at PSI, who was responsible for the project to develop the new test.

Related Links:
Paul Scherrer Institute 
University of Basel

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
SARS-CoV-2 Test
One Step SARS-CoV-2 Nucleic Acid Detection Kit (P761H)

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.