We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

PROMEGA

Promega has a portfolio of more than 3,000 products covering the fields of genomics, protein analysis and expression,... read more Featured Products: More products

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Long Mononucleotide Repeat Markers Validated for Microsatellite Instability Detection

By LabMedica International staff writers
Posted on 12 Jan 2022
Print article
Image: The Promega MSI Analysis System V1.2 and the LMR-MSI systems are PCR-based methods for detecting microsatellite instability (MSI) in solid tumors (Photo courtesy of Promega)
Image: The Promega MSI Analysis System V1.2 and the LMR-MSI systems are PCR-based methods for detecting microsatellite instability (MSI) in solid tumors (Photo courtesy of Promega)
Mismatch repair deficiency (dMMR) predicts response to immune checkpoint inhibitor therapy in solid tumors. Long mononucleotide repeat (LMR) markers may improve the interpretation of microsatellite instability (MSI) assays.

Normally, mismatch repair (MMR) proteins recognize and repair these errors immediately after DNA replication. However, in MMR deficient cells, these errors go unrecognized and remain unrepaired, resulting in novel microsatellite length alleles, or microsatellite instability. dMMR assays are used to screen cancer patients for Lynch syndrome and immune checkpoint inhibitor therapy.

Oncologists at the Johns Hopkins University School of Medicine (Baltimore, MD, USA) included in a study 48 colorectal cancer (CRC) samples, 66 endometrial cancer (EC) samples, 12 pancreatic cancer (PC) samples, and 22 samples of other cancer types, in addition to 12 MSI-low (MSI-L) samples of various cancer types. Macrodissection of tumor and normal tissues was guided by hematoxylin and eosin–stained sections. DNA was then extracted from formalin-fixed, paraffin-embedded tissue using the tissue preparation system (Siemens Healthineers, Erlangen, Germany). DNA concentrations were quantified using the Qubit fluorometer (Invitrogen, Carlsbad, CA, USA).

Immunohistochemistry (IHC) results for MLH1, MSH2, MSH6, and PMS2 proteins were obtained from surgical pathology reports and were used to define MMR status. Antibody clones included anti-MLH1 (clone M1), anti-MSH2 (clone G219-1129), anti-MSH6 (clone SP93), and anti-PMS2 (clone A16-4), all from Roche/Ventana Medical Systems (Tucson, AZ, USA). All IHC assays were performed on the Ventana Benchmark system. Multiplex PCR amplification of five mononucleotide repeat markers and two pentanucleotide repeat markers was performed using the MSI Analysis System V1.2 and the Long Mononucleotide Repeat (LMR) MSI Analysis System (Promega, Madison, WI, USA). Amplification products were analyzed using an ABI 3130×L or ABI 3500×L capillary electrophoresis instrument (Applied Biosystems, Foster City, CA, USA).

The investigators reported that the sensitivity and specificity of the LMR MSI panel for dMMR detection were both 100% in CRC. The sensitivity values of the MSI V1.2 and LMR MSI panels in EC were 88% and 98%, respectively, and the specificity values were both 100%. The sensitivity of the LMR panel was 75% in dMMR prostate cancer detected by immunohistochemistry. The 22 samples of other cancer types that were previously classified as MSI-high (MSI-H) were also classified as MSI-H using the LMR MSI panel. For the 12 samples that were previously classified as MSI-low (MSI-L), one sample was classified as microsatellite stable using the LMR MSI panel, eight as MSI-L, and three as MSI-H.

The authors concluded that the LMR MSI panel showed high concordance to the MSI V1.2 panel in CRC and greater sensitivity in EC. The LMR MSI panel improves dMMR detection in non-colorectal cancers. The study was published on December 02, 2021 in The Journal of Molecular Diagnosis.

Related Links:
Johns Hopkins University School of Medicine
Siemens Healthineers
Invitrogen
Roche/Ventana Medical Systems
Promega
Applied Biosystems


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.