We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Stool Tests Rapidly Predict H. pylori Antibiotic Resistance

By LabMedica International staff writers
Posted on 11 Nov 2021
Print article
Image: Scanning Electron Micrograph of Helicobacter pylori: antibiotic resistance can be profiled using next generation sequencing (Photo courtesy of Juergen Berger / Science Photo Library)
Image: Scanning Electron Micrograph of Helicobacter pylori: antibiotic resistance can be profiled using next generation sequencing (Photo courtesy of Juergen Berger / Science Photo Library)
Helicobacter pylori eradication rates have declined in concert with rising antimicrobial resistance worldwide. There is a need for rapid accurate, reliable antibiotic resistance testing, especially in refractory cases.

Culture-based susceptibility testing requires endoscopic gastric biopsy, with resultant inconvenience and costs. Molecular testing using next generation sequencing (NGS) of stool potentially allows rapid prediction of resistance to all six commonly used antimicrobials.

Clinical Scientists at the Rhode Island Hospital (Providence, RI, USA) and their colleagues compared the accuracy of NGS with gastric biopsy for identifying H. pylori antibiotic resistance in 262 patients scheduled for upper endoscopy at four clinical practices. Two gastric biopsies were taken for NGS and a spontaneously passed stool specimen was also obtained within two weeks of endoscopy, but before starting treatment for H. pylori. H. pylori was confirmed in biopsies by PCR followed by NGS. H pylori in stools was confirmed by fecal antigen test and PCR. Stool samples positive by at least two stool tests were also examined by NGS to predict resistance to amoxicillin, clarithromycin, metronidazole, tetracycline, levofloxacin, and rifabutin.

The investigators reported that 73 (29%) patients were H. pylori positive by stool testing; two had insufficient gastric DNA for analysis. Of the 71 evaluable cases identical results for stool and biopsy samples were obtained for all six antibiotics in 65 (91.5%). In six cases there was mismatch between gastric and stool results; in four cases this was due to one antibiotic-associated mutation difference. For 70.4% of gastric biopsies, there was at least one resistance-associated mutation. Only 21 (29.6%) had no mutations. Results for stool were similar: 50 cases (68.5%) had at least one resistance-associated mutation and 23 (31.5%) had no mutations. The concordance between stool and gastric biopsies for individual antibiotics ranged from 89% (metronidazole) to 100%.

Steven Moss, MD, a gastroenterologist and senior author of the study, said, “Culture-based susceptibility testing requires endoscopic gastric biopsy, with resultant inconvenience and costs. It is now possible to rapidly obtain susceptibility data without endoscopy.”

The authors concluded that profiling H. pylori antibiotic resistance by NGS from stool samples provides rapid results highly comparable to those obtained from gastric biopsies. Using NGS to determine H. pylori antibiotic resistance using stool obviates the cost, inconvenience and risks of endoscopy for patients in whom resistance profiling is needed. The study was presented at the 2021 Virtual Meeting of the American College of Gastroenterology (ACG) held October 22-27, 2021.

Related Links:
Rhode Island Hospital

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.