We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

New State-of-the-Art, Ultrasensitive Blood Test to Transform Detection of Brain Damage and Poor Prognosis After Head Injury

By LabMedica International staff writers
Posted on 06 Oct 2021
Print article
Illustration
Illustration

A new study has used a state-of-the-art blood test to track damage to the brain in people who have sustained traumatic brain injury (TBI).

The study by researchers from the UK DRI Care Research and Technology Centre, based at Imperial College London (London, UK) found that measuring the protein biomarker in the blood can provide a simpler, more accurate way to predict clinical outcomes and help to identify those at higher risk of developing dementia. Around 50 million people each year worldwide experience TBI as a result of head injury. In the brains of these individuals, the neurons encounter severe stretching and sheering forces which cause damage to their axons, the part which transmits electrical signals. Axonal damage is the best predictor of clinical outcomes and recovery but has been difficult to measure in patients.

The research team set out to identify a chemical that could be easily detected in the blood - a biomarker - that would accurately reflect this axonal damage in the brain after TBI. A multicentre study was established involving over 200 patients who had experienced moderate to severe TBI, recruited from eight major trauma centers across Europe. In 56% of cases the injuries were classed as ‘high energy’, involving falls from over 3 meters or collisions at more than 30km/hour, with the majority of these caused by road traffic accidents.

To find a suitable protein marker, the researchers harnessed cutting-edge technology called single molecule array (SiMoA) that can measure sub-femtomolar (10-16) levels of chemicals in the blood. Starting their search by detecting proteins that are important to the structure of the axons, they found that measuring blood levels of neurofilament light provided a remarkably accurate long-term prognosis for the patient. Neurofilament light has become a useful tool for diagnosis, monitoring and prognosis across neurodegenerative disease like Alzheimer’s, but its potential for use in TBI has not been fully assessed and optimised until now.

The team also used advanced types of brain imaging to validate blood test findings. Blood levels of neurofilament light were found to be closely related to measures from diffusion MRI, an advanced type of imaging which also provides measures related to damage to axons. The team also compared blood levels of neurofilament light with a special type of brain imaging that measures shrinkage (atrophy) of the brain, indicating the loss of nerve cells. They found that blood levels of neurofilament light tracked extremely well to brain atrophy and importantly predicted further nerve cell degeneration up to one year after the injury. These findings mean future blood tests could provide similar information to MRIs, but in a more cost-effective and accessible manner.

In order to further validate the blood biomarker findings, the team also analyzed fluid samples from around the damaged neuronal axons. Following surgery in some of the patients, such as a craniotomy to remove part of the skull, the team inserted catheters into the brain. With simultaneous measurements taken from the blood, the researchers were able to identify a strong correlation, supporting evidence that the protein in the blood originated at the source of the damage, and so reflected well the progressive damage taking place in the brain.

“Outcomes after TBI are very difficult to predict. This is a major challenge for doctors trying to care for patients recovering from head injuries of all severities,” said Prof David Sharp, Director of the UK DRI’s Care Research and Technology Centre. “What we need are more accurate diagnostic tests that can be used in our major trauma units and clinics. Our work shows that measuring neurofilament light soon after head injury helps predict who will develop long-term problems. We are applying this in various contexts, including for the investigation of sporting TBI, and will be investigating whether this blood test can be used to predict those at high risk of developing dementia”

“Traumatic brain injury is a risk factor for dementia, and identifying the long-term impact of individual head injuries remains an important goal for research,” said Dr. Rosa Sancho, Head of Research at Alzheimer’s Research UK. “This work gets us closer to a blood test able to predict how brain changes develop up to one year after injury. Dementia develops over many years and we need to build on these findings to help improve longer-term prognosis and to reliably determine an individual’s risk of dementia following a head injury.

Related Links:
Imperial College London 

Gold Supplier
Pipette Tips
Sapphire Pipette Tips
New
Pancreatic Elastase ELISA Kit
Pancreatic Elastase ELISA
New
Lateral Flow Test Cassette Reader
Quantum Blue III
New
Gold Supplier
BMP Whole Blood Analyzer
GEM Premier ChemSTAT

Print article

Channels

Hematology

view channel
Image: The Gazelle Hb Variant Test for screening, diagnosis and management of sickle cell disease and related hemoglobinopathies at the point of care (Photo courtesy of Hemex Health)

Point-of-Care Device Accurately Rapidly Diagnoses Sickle Cell Disease

Hemoglobinopathies are the most common autosomal hereditary disorders. Approximately 7% of the global population carries hemoglobin gene mutation including structural hemoglobin variants like sickle hemoglobin... Read more

Immunology

view channel
Image: The IMMULITE 2000 XPi Immunoassay System provides multiple tests on a single, easy-to-use analyzer, including the thyroid-stimulating immunoglobulin assay (Photo courtesy of Siemens Healthcare)

Immunoassays Evaluated for Thyroid-Stimulating Receptor Antibody in Graves’ Disease

Graves' disease (GD), also known as toxic diffuse goiter, is an autoimmune disease that affects the thyroid. It frequently results in and is the most common cause of hyperthyroidism and it also often results... Read more

Microbiology

view channel
Image: The sciREADER CL2 enables high quality digital colorimetric imaging of various support formats (Photo courtesy of SCIENION)

Multiplex Immunoassay Developed for Confirmation and Typing of HTLV Infections

Human T-Cell Lymphotropic Viruses (HTLV) type 1 and type 2 account for an estimated five to 10 million infections worldwide and are transmitted through breast feeding, sexual contacts and contaminated... Read more

Pathology

view channel
Illustration

AI Accurately Detects and Diagnoses Colorectal Cancer from Tissue Scans As Well or Better Than Pathologists

Artificial intelligence (A) can accurately detect and diagnose colorectal cancer from tissue scans as well or better than pathologists, according to a new study. The study, which was conducted by researchers... Read more

Technology

view channel
Image: PKeye Workflow Monitor System (Photo courtesy of PerkinElmer, Inc.)

PerkinElmer’s New Cloud-Based Platform Enables Laboratory Personnel to Remotely Manage Its Instruments in Real-Time

PerkinElmer, Inc. (Waltham, MA; USA) has launched its PKeye Workflow Monitor, a cloud-based platform enabling laboratory personnel to remotely manage and monitor their PerkinElmer instruments and workflows... Read more

Industry

view channel
Illustration

Global Point of Care Diagnostics Market to Top USD 35 Billion by 2027 Due to Rising Diabetic Cases

The global point of care diagnostics market is projected to grow at a CAGR of close to 6% from more than USD 23 billion in 2020 to over USD 35 billion by 2027, driven by an increase in the number of diabetic... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.