We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

SARSTEDT AG+CO KG

Sarstedt provides laboratory and medical equipments, and develops, manufactures and sells equipment and consumables i... read more Featured Products: More products

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Manual Aspiration by Monovette Reduces Hemolytic Sampling

By LabMedica International staff writers
Posted on 18 Aug 2021
Print article
Image: The manual aspiration of the 4.7 mL S-Monovette Lithium-Heparin Gel tube reduces hemolytic sampling (Photo courtesy of SARSTEDT AG)
Image: The manual aspiration of the 4.7 mL S-Monovette Lithium-Heparin Gel tube reduces hemolytic sampling (Photo courtesy of SARSTEDT AG)
Hemolytic blood samples are the number one cause for specimen rejection at emergency departments (ED). Triggered by unsuitable blood sampling material or incorrect handling and a related strong vacuum force, hemolytic samples often must be retaken.

Hemolysis refers to the release of hemoglobin and other intracellular components into the surrounding plasma due to the ruptured cell membrane of erythrocytes. The root cause of hemolysis in vitro is an improper sample drawing or, more specifically, an evolving strong vacuum force.

Clinical Laboratorians at the HFR Fribourg-Hôpital Cantonal (Villars-sur-Glâne, Switzerland) conducted a head-to-head study between January and April 2019. In the first eight weeks, all specimens were collected using BD Vacutainer Lithium-Heparin Gel tubes (Vacutainer, Becton, Dickinson and Company, Franklin Lakes, NJ, USA), in the second eight weeks, blood was taken using S-Monovette Lithium-Heparin Gel tubes (SARSTEDT AG, Nümbrecht, Germany) in aspiration mode. Specimens were categorized into five classes (0–30, 31–50, 51–75, 76–100, and 101+ mg/dL of cell-free hemoglobin) and for the statistical analyses, all samples exceeding 30 mg/dL were classified as hemolytic.

All blood samples from the emergency department were evaluated using a Cobas 6000, (Roche Diagnostics, Rotkreuz, Switzerland) a state-of-the-art analyzing system, and their Hemolysis Index (HI 1 = 1 mg of free cell hemoglobin in 1 dL blood plasma) was determined. Data were collected on 4,794 blood specimens (Vacutainer: 2,634 samples, S-Monovette: 2,160 samples).

The scientists reported that overall, 11.3 % of samples were rated as hemolytic because their concentration of hemolysis exceeded 30 mg/dL. This proportion differed considerably between specimens drawn by Vacutainer (17.0 %) and S-Monovette (4.3 %), meaning that, in proportion, there were four times as many hemolytic samples when using Vacutainer. While the percentage of non-hemolytic samples (HI of 0–30 mg/dl) was substantially higher for specimens drawn by S-Monovette (95.7 %) than Vacutainer (83.0 %), the opposite was true for all HI categories above 30 mg/dl.

The authors concluded that regarding hemolysis rates, a slow manual aspiration using S-Monovette was superior to vacuum tubes with predefined filling volumes, as demonstrated in the setting of their ED, which has important practical implications. This blood sampling process could be highly beneficial, not only from a financial point of view, but also with regards to reducing unnecessary tasks and stress for nursing staff and improving patient outcome overall. The study was published on July 28, 2021 in the journal Practical Laboratory Medicine.

Related Links:
HFR Fribourg-Hôpital Cantonal
Becton, Dickinson and Company
SARSTEDT AG
Roche Diagnostics


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.