We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Smartphone-Based DNA Diagnostics Detects Malaria

By LabMedica International staff writers
Posted on 16 Aug 2021
Print article
Image: Smartphone-based DNA diagnostics for malaria detection using deep learning for local decision support and blockchain technology for security (Photo courtesy of University of Glasgow)
Image: Smartphone-based DNA diagnostics for malaria detection using deep learning for local decision support and blockchain technology for security (Photo courtesy of University of Glasgow)
There remains a substantial burden from infectious disease in low-resource rural communities, not least as a consequence of malaria. In infectious disease diagnosis, results need to be communicated rapidly to healthcare professionals once testing has been completed so that care pathways can be implemented.

Diagnostic testing continues to underpin control and prevention strategies, primarily through the use of rapid, point-of-care, lateral flow immunoassays, which are affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable devices. This represents a particular challenge when testing in remote, low-resource rural communities, in which such diseases often create the largest burden.

Bioengineers at the University of Glasgow (Glasgow, UK) and their colleagues developed a smartphone-based end-to-end platform for multiplexed DNA diagnosis of malaria. The diagnostic platform comprises both hardware and software. The hardware includes a three-dimensional (3D) printed mobile heater for loop-mediated isothermal amplification (LAMP)-based diagnostics as well as a mobile phone and a low-cost disposable sensor cartridge, while the software includes an Arduino program, an Android app and a Hyperledger blockchain network.

The team field tested the platform on blood samples collected from 40 school children from Uganda, and compared their results with the gold-standard PCR assay. The team also used malaria rapid immunodiagnostic tests (RDT) for comparison.

The scientists reported that of the 28 tests that were correctly assigned and valid, 16 were true positives (positive for the manually recorded test, the blockchain records and real-time PCR), six were true negatives, three were false negatives and three were false positives (with respect to the gold standard). The blockchain implementation ensured the security of transactions, opening up the possibility for integration into surveillance databases, while maintaining the required safety around data privacy.

The authors concluded that the smartphone-based end-to-end platform they had developed for multiplexed DNA-based lateral flow diagnostic assays that can be used in remote, low-resource settings. Their decision support tool provides automated detection of the results and their analysis, supporting human expertise, and transactions involved in data handling are secured, trusted and endorsed using blockchain technology. The study was published on August 2, 2021 in the journal Nature Electronics.

Related Links:
University of Glasgow

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.