We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

BECKMAN COULTER, INC.

Beckman Coulter develops, manufactures and markets laboratory systems, reagents, centrifugation, lab automation, elec... read more Featured Products: More products

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Differential Biochemical Markers Identified in Inflammatory Processed Synovial Fluid

By LabMedica International staff writers
Posted on 28 Jul 2021
Print article
Image: The AU5800 Clinical Chemistry Analyzer is an automated chemistry analyzer that measures many different chemical analytes (Photo courtesy of Beckman Coulter)
Image: The AU5800 Clinical Chemistry Analyzer is an automated chemistry analyzer that measures many different chemical analytes (Photo courtesy of Beckman Coulter)
Joint infections with a non-specific presentation are difficult to diagnose, mainly due to the absence of specific clinical signs and symptoms, relative lack of accurate laboratory tests, low virulence due to previous treatment, and biofilm ability of the pathogens.

This difficulty is especially true for patients treated with non-targeted antibiotics, including patients with implanted joint replacements. New biochemical markers are being sought to help quickly determine the extent of the inflammatory process taking place in the joint cavity in routine biochemical practice, either due to its increased concentration in synovial fluid (SF) or directly in serum/plasma.

Clinical Biochemists and their colleagues at the University of Ostrava (Ostrava, Czech Republic) sought to identify biochemical markers in Synovial Fluid (SF) that can predict susceptibility to ongoing inflammatory processes in the joint cavity. Ninety-two consecutive patients were divided into four SF groups based on clustering analysis: non-inflammatory SF (73%), inflammatory-non-pyogenic (12%), inflammatory-pyogenic (10%), or hemorrhagic (5%).

The team measured and compared the levels of the following biochemical markers in SF: glucose, lactate, total protein, uric acid, C-Reactive Protein (CRP), Leukocyte Count (WBC), Mononuclear (MNP), Polymorphonuclear (PMN), Interleukin (IL)-1 beta, IL6, Procalcitonin, Presepsin, Neutrophil Gelatinase-Associated Lipocalin (NGAL), Human Neutrophil Defensin 1-3 (HNP1-3), Cartilage Oligomeric Matrix Protein, Lactoferrin (HLF2), Polymorphonuclear Elastase (PMNE), Matrix Metalloproteinase (MMP)-1, and MMP-3. The concentrations of the biochemical biomarkers were determined on an AU 5800 automated analyzer (Beckman Coulter, Brea, CA, USA). They analyzed hematological parameters, relative and absolute numbers of leukocytes (WBC), and (MNP) and PMN leukocyte counts on a XN-9000 Automated in Body Fluid mode (Sysmex, Kobe, Japan).

The scientists reported that a significant difference between WBC, PMN, MNP, CRP, IL-1β, IL-6, HNP1-3, HLF2, PMNE, and individual groups of SF type. They also found a significant correlation between WBC and PMN, MNP, and CRP; PMN and HNP1-3 and PMNE; IL-6 and PMNE; IL-1β and NGAL, HLF2, and PMNE; HNP1-3 and NGAL, HLF2, and PMNE; NGAL and HLF2 and PMNE; and HLF2 and PMNE concentrations in all SF groups, between WBC and MNP; IL-1β and NGAL and MMP-3; HNP1-3 and PMNE; and NGAL and HLF2 concentrations in the non-inflammatory SF group, and between PMN and MNP in the inflammatory-non-pyogenic and inflammatory-pyogenic SF groups. PMN, MNP, WBC, CRP, and HNP1-3 in SF predicted the inflammatory processes with excellent diagnostic performance.

The authors concluded that SF biomarkers WBC, PMN, MNP CRP, HNP1-3, IL-1, IL-6, PMNE, and HLF2 allow the classification of new patients into the relevant SF group with an accuracy of 94.4%. In addition, WBC, PMN, MNP, CRP, and HNP1-3 provide excellent diagnostic sensitivity and specificity for the diagnosis of infection, despite the study including a limited number of patients with pyogenic and non-pyogenic inflammation. The study was originally published on line on March 15, 2021 in the Journal of Clinical Chemistry and Laboratory Medicine.

Related Links:
University of Ostrava
Beckman Coulter
Sysmex


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Molecular Diagnostics

view channel
Image: The cobas Malaria test is the first FDA-approved molecular test to screen U.S. blood donors for malaria (Photo courtesy of Roche)

First FDA-Approved Molecular Test to Screen Blood Donors for Malaria Could Improve Patient Safety

Malaria, a serious illness that often leads to death, is spread by a specific mosquito species that infect humans with a parasite. Other transmission modes include blood transfusions, organ transplants,... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The medical office procedure detects the key biomarker in Parkinson’s and related neurodegenerative diseases (Photo courtesy of BIDMC)

Simple Skin Biopsy Test Detects Parkinson’s and Related Neurodegenerative Diseases

Parkinson's disease and a group of related neurodegenerative disorders known as synucleinopathies impact millions globally. These conditions, including Parkinson’s disease (PD), dementia with Lewy bodies... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.