We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Targeted Locus Amplification Validated for Lymphoma

By LabMedica International staff writers
Posted on 15 Jul 2021
Print article
Image: Bone marrow aspirate from a patient with diffuse large B-cell lymphoma (Photo courtesy of Dr. Peter G. Maslak, MD)
Image: Bone marrow aspirate from a patient with diffuse large B-cell lymphoma (Photo courtesy of Dr. Peter G. Maslak, MD)
Structural variation (SV) in the genome is a recurring hallmark of cancer. Translocations (genomic rearrangements between chromosomes) in particular are found as recurrent drivers in many types of hematolymphoid malignancies.

In routine diagnostic pathology, cancer biopsies are preserved by formalin-fixed, paraffin-embedding (FFPE) procedures for examination of intra-cellular morphology. Such procedures inadvertently induce DNA fragmentation, which compromises sequencing-based analyses of chromosomal rearrangements.

Medical Scientists at the University Medical Center Utrecht (Utrecht, the Netherlands) and colleagues carried out a retrospective study using a set of 129 archival B-cell Non-Hodgkin lymphoma tissue samples, which were selected by the respective sites. The patients had been mostly diagnosed as Diffuse Large B-Cell Lymphoma (DLBCL), but also Burkitt, follicular and marginal zone lymphomas and some other diagnoses were included. Non-lymphoma control samples were also analyzed, mostly reactive lymph node samples and tonsillectomy specimens. FFPE tissue samples were obtained using standard diagnostic procedures.

The team developed FFPE-targeted locus capture (FFPE-TLC) method for targeted sequencing of proximity-ligation products formed in FFPE tissue blocks, and PLIER, a computational framework that allows automated identification and characterization of rearrangements involving selected, clinically relevant, loci. FFPE-TLC, blindly applied to 149 lymphoma and control FFPE samples, identifies the known and previously uncharacterized rearrangement partners. This method outperforms fluorescence in situ hybridization (FISH) in sensitivity and specificity, and shows clear advantages over standard capture-NGS methods, finding rearrangements involving repetitive sequences which they typically miss. The team included core needle biopsy samples in this study, which showed that even very small samples yielded good quality FFPE-TLC results.

The authors concluded that FFPE-TLC combined with PLIER for objective rearrangement calling offers clear advantages over regular NGS-capture approaches and over FISH for the molecular diagnosis of lymphoma FFPE specimens. The study was published on June 7, 2021, in the journal Nature Communications.

Related Links:
University Medical Center Utrecht

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.