We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

THERMO FISHER SCIENTIFIC

Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Different Methods Compared for Isolating Fungal DNA

By LabMedica International staff writers
Posted on 26 Apr 2021
Print article
Image: A 47-year-old man with mucormycosis and (b) electron micrograph of his skin showing sporangia of Mucorales fungi: non-apophysate sporangia with pronounced columellae and conspicuous collarette at the base of the columella following sporangiospore dispersal (Photo courtesy of IntechOpen Limited)
Image: A 47-year-old man with mucormycosis and (b) electron micrograph of his skin showing sporangia of Mucorales fungi: non-apophysate sporangia with pronounced columellae and conspicuous collarette at the base of the columella following sporangiospore dispersal (Photo courtesy of IntechOpen Limited)
Mucormycosis (previously called zygomycosis) is a serious, but rare fungal infection, caused by a group of molds called mucormycetes. These molds live throughout the environment. Mucormycosis mainly affects people who are immunocompromised or diabetic.

Mucormycosis frequently infects the sinuses, brain, or lungs. While infection of the oral cavity or brain are the most common forms of mucormycosis, the fungus can also infect other areas of the body such as the gastrointestinal tract, skin, and other organ systems. The disease is often characterized by hyphae growing in and around blood vessels.

Medical Scientists at the University of Turin School of Medicine (Turin, Italy) compare the methods of DNA isolation in the moulds of genus Mucorales with special regard to the amount and purity of the DNA acquired. A total of six Mucorales clinical strains were used and these included three Mucor spp. and three Rhizopus spp. Filamentous fungi were identified according to macroscopic and microscopic morphological procedures and maintained on potato dextrose agar. For DNA extraction five named methods A, B, C, D and E protocol were compared. Amplification and amplicon detection using extracted DNA template was performed using an Applied Biosystems 7500 Real Time PCR System (Life Technologies, Carlsbad, CA, USA).

The scientists reported that method A based on boiling moulds obtained a greater amount of fungal DNA, but failed to extract amplifiable DNA from Mucorales. Microwave and freezing, peculiarity of methods B and C respectively, have achieved poor results both in terms of DNA concentration and of amplification. On the other hand, method E based on addition of a potassium acetate buffer in the lysis step, obtained a decent level of amount of fungal DNA with greater amplifiable DNA from Mucorales.

The authors concluded that overall, the E method was the most efficient method in the extraction of DNA from fungal cultures compared to the other methods considering time, cost, technical expertise, and instrumentation. Use of this assay will allow medical laboratorians to obtain DNA from fungi quickly for use in molecular assays. The study was published on April 17, 2021 in the journal Practical Laboratory Medicine.

Related Links:
University of Turin School of Medicine
Life Technologies


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.