We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




A Method for Accurately Assessing the Latent Virus Reservoir in Chronic HIV Patients

By LabMedica International staff writers
Posted on 20 Apr 2021
Print article
Image: HIV assembling on the surface of an infected macrophage. The HIV virions have been marked with a green fluorescent tag and then viewed under a fluorescent microscope (Photo courtesy of Wikimedia Commons)
Image: HIV assembling on the surface of an infected macrophage. The HIV virions have been marked with a green fluorescent tag and then viewed under a fluorescent microscope (Photo courtesy of Wikimedia Commons)
A modified version of the PCR test can determine the quantity and quality of inactive human immunodeficiency virus (HIV) in the genes of individuals suffering from chronic HIV.

While HIV is not curable, antiretroviral therapy drugs (ARTs) effectively suppress the HIV virus to undetectable levels. Nonetheless, a latent HIV reservoir persists due to HIV's integration into the host DNA, specifically in the chromosomes of T lymphocytes and macrophages. Quantifying this replication-competent HIV reservoir is essential for evaluating prognostic and curative strategies.

Currently used viral outgrowth assays (VOAs) underestimate the reservoir because they fail to induce all replication-competent proviruses. Single- or double-region HIV DNA assays overestimate it because they fail to exclude many defective proviruses.

To correct for the over and under estimation of the latent HIV reservoir, investigators at the University of Washington (Seattle, USA) designed two triplex droplet digital PCR (ddPCR) assays, each with two unique targets and one in common, and normalized the results to PCR-based T-cell counts.

The classical PCR test carries out one reaction per single sample. The digital PCR (dPCR) method also carries out a single reaction within a sample, however the sample is separated into a large number of partitions and the reaction is carried out in each partition individually. This separation allows a more reliable collection and sensitive measurement of nucleic acid amounts. The dPCR method has been demonstrated as useful for studying variations in gene sequences - such as copy number variants and point mutations - and it is routinely used for clonal amplification of samples for next-generation sequencing.

Droplet digital PCR (ddPCR) is a variation of dPCR in which a 20 microliter sample reaction including assay primers and either Taqman probes or an intercalating dye, is divided into about 20,000 nanoliter-sized oil droplets through a water-oil emulsion technique, thermocycled to endpoint in a 96-well PCR plate, and fluorescence amplitude read for all droplets in each sample well in a droplet flow cytometer.

A ddPCR assay protocol reported in 2019 probed two regions of the HIV-1 genome within each droplet. For the current study, the investigators used two three-region (triplex) ddPCR assays to develop a five-region test (one overlapping region allowed inter-assay quality control). They referred to triple-positive ddPCR droplets as “potentially intact.” By combining the two parallel triplex assays, they could confidently quantify truly intact HIV-1 viral genomes. As a further enhancement, they adapted a multiplexed ddPCR assay specifically quantifying T-cells to accurately normalize to the number of HIV target cells interrogated. This additional step was especially useful for tissue biopsies, because, in contrast to blood, cell populations in tissues were difficult to isolate and purify.

Results obtained during this study revealed that both HIV ddPCR assays were specific, sensitive, and reproducible. Together, they estimated the number of proviruses containing all five primer-probe regions. The five-target results were on average 12.1-fold higher than and correlated with paired quantitative VOA but estimated a markedly smaller reservoir than previous DNA assays.

"Our laboratory test is a simpler way to quantify the reservoir of intact viruses," said senior author Dr. Florian Hladik, research professor of obstetrics and gynecology at the University of Washington. "I can see a patient going to a doctor and adding this to the list of questions they might ask. Now they ask about their viral load and T-cell count. I hope in the future they may be able to ask how large their HIV reservoir might be. What gets me excited is that one day, this number may tell them how long it will take to entirely eliminate HIV from their body."

The study was published in the April 12, 2021, online edition of the journal Cell Reports Medicine.

Related Links:
University of Washington

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.