We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Roche Diagnostics

Develops, manufactures, and markets a wide range of in vitro diagnostic systems, instruments, reagents, and tests read more Featured Products: More products

Download Mobile App




Epidermal Patch Simultaneously Monitors Hemodynamic and Metabolic Biomarkers

By LabMedica International staff writers
Posted on 24 Mar 2021
Print article
Image: The first wearable device for simultaneous monitoring of hemodynamic and biochemical biomarkers (Photo courtesy of University of California, San Diego)
Image: The first wearable device for simultaneous monitoring of hemodynamic and biochemical biomarkers (Photo courtesy of University of California, San Diego)
Intertwined with concepts of telehealth, the internet of medical things, and precision medicine, wearable sensors offer features to actively and remotely monitor physiological parameters. Monitoring of single physical parameters, such as the electrocardiogram and blood pressure (BP), as well as biochemical parameters, such as glucose, using non-invasive wearable sensors has been reported.

Heart rate (HR) and BP, two of the most important vital signs, can dynamically and directly reflect the physiological status of the body. These cardiovascular parameters can be affected by fluctuations of various biomarker concentrations originating from activities such as movement, stress or the intake of food, drinks and drugs that can lead to sudden and sometimes lethal alterations.

Nanoengineering experts at the University of California, San Diego (La Jolla, CA, USA) have developed an all-in-one health monitoring device that can reliably measure glucose, lactate, and blood pressure using a soft, stretchy skin patch the size of a postage stamp. It is notoriously difficult to do blood pressure monitoring and metabolite sensing at the same time in the human body due to signal interference when chemical and ultrasound hydrogels intermix.

The blood pressure sensor sits near the center of the device and consists of a set of small ultrasound transducers that are welded to the substrate by a conductive ink. A voltage applied to the transducers causes them to send ultrasound waves into the body and, when they bounce off an artery, the sensor detects the echoes and translates the signals into a blood pressure reading.

The chemical sensors are a pair of electrodes screen-printed on the patch from conductive ink. One electrode can sense either lactate (a biomarker of physical exertion), caffeine, or alcohol, and is printed on the right side of the patch together with the sweat stimulation system, which works by releasing the sweat-inducing drug pilocarpine into the skin for detection of chemical substances in that sweat. The other electrode senses glucose and is printed on the left side of the patch where the interstitial fluid extraction system is located. It works by passing a mild electrical current through the skin to pull out interstitial fluid so glucose can be measured in that fluid.

Glucose, lactate, alcohol, and blood pressure signals were validated against a commercial ACCU-CHEK glucometer (Roche Diagnostics, Indianapolis, IN, USA), blood-lactate meter (NOVA Biomedical, Waltham MA, USA), a BACtrack S80 Pro breathalyzer (San Francisco, CA, USA), and FDA-approved blood pressure cuff, respectively. Caffeine concentrations were estimated by standard addition methodology using collected sweat. An electrochemical impedance analyzer was used to stimulate sweat and extract interstitial fluid simultaneously.

The authors concluded that in human volunteers, the device captured physiological effects of food intake and exercise, in particular the production of glucose after food digestion, the consumption of glucose via glycolysis, and increases in blood pressure and heart rate compensating for oxygen depletion and lactate generation. The study was published on February 15, 2021 in the journal Nature Biomedical Engineering.

Related Links:
University of California, San Diego
Roche Diagnostics
NOVA Biomedical
BACtrack


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.