We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Analysis of Urinary Exosome RNA Can Diagnose Kidney Transplant Rejection

By LabMedica International staff writers
Posted on 15 Mar 2021
Print article
Image: Presence of lymphocytes within tubular epithelium is one of the pathological features of acute cellular rejection of a kidney transplant (Photo courtesy of Wikimedia Commons)
Image: Presence of lymphocytes within tubular epithelium is one of the pathological features of acute cellular rejection of a kidney transplant (Photo courtesy of Wikimedia Commons)
A panel of mRNA signatures derived from urinary exosomes was shown to be a powerful and noninvasive tool to screen for the body’s rejection of a kidney allograft (a transplant from a genetically non-identical donor).

The traditional biomarkers currently used to monitor a kidney allograft for rejection are late markers of injury and they lack sensitivity and specificity. Allograft biopsies on the other hand, are invasive and costly.

To improve this situation, investigators at Harvard Medical School (Boston, MA, USA) developed a noninvasive clinical test to accurately diagnose kidney allograft rejection. This test was based on the isolation of urinary exosomal mRNAs and the identification of rejection signatures on the basis of differential gene expression.

Exosomes contain the major fraction of mRNA in urine and consequently are an ideal target to probe for molecular biomarkers of kidney diseases. Exosomes are lipid-enclosed extracellular vesicles measuring 30–150 nanometers in diameter that are released by most cells in the body and play an important role in intercellular communication by carrying bioactive molecules (soluble proteins and nucleic acids such as mRNAs) to a target cell. Exosomes in urine are primarily released from renal epithelial cells derived from renal tubular structures and hold promise as one component of a noninvasive liquid biopsy for detecting molecular changes in distinct nephron regions even in the absence of disease. Their stability in urine makes them a potentially powerful tool for liquid biopsy and a noninvasive diagnostic biomarker for kidney-transplant rejection.

For this study, the investigators isolated exosomes from 175 urine samples obtained from patients who were already undergoing kidney biopsies. The investigators isolated protein and mRNA from these exosomes and identified a 15 gene rejection signature that could distinguish between normal kidney function and rejection. Furthermore, the investigators pinpointed five genes that could differentiate between cellular rejection and antibody-mediated rejection.

"These findings demonstrate that exosomes isolated from urine samples may be a viable biomarker for kidney transplant rejection," said senior author Dr. Jamil Azzi, associate professor of Medicine at Harvard Medical School. "Our goal is to develop better tools to monitor patients without performing unnecessary biopsies. We try to detect rejection early, so we can treat it before scarring develops. "If rejection is not treated, it can lead to scarring and complete kidney failure. Because of these problems, recipients can face life-long challenges."

The urinary exosome study was published in the March 3, 2021, online edition of the Journal of the American Society of Nephrology.

Related Links:
Harvard Medical School

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.