We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Proteogenomic and Metabolomic Studies Characterize Human Glioblastoma

By LabMedica International staff writers
Posted on 23 Feb 2021
Print article
Image: Glioblastoma omics highlights informative tumor features, immune subtypes (Photo courtesy of Washington University in St. Louis).
Image: Glioblastoma omics highlights informative tumor features, immune subtypes (Photo courtesy of Washington University in St. Louis).
Glioblastoma (GBM) is an aggressive type of cancer that can occur in the brain or spinal cord. Glioblastoma forms from cells called astrocytes that support nerve cells. Glioblastoma can occur at any age, but tends to occur more often in older adults. It can cause worsening headaches, nausea, vomiting and seizures.

The cellular origin of glioblastoma is unknown. Because of the similarities in immunostaining of glial cells and glioblastoma, gliomas such as glioblastoma have long been assumed to originate from glial-type cells. More recent studies suggest that astrocytes, oligodendrocyte progenitor cells, and neural stem cells could all serve as the cell of origin.

Medical and Genetic Scientists associated with Washington University in St. Louis (St. Louis, MO, USA) used whole-genome sequencing, exome sequencing, RNA sequencing, microRNA-seq, single-nuclei RNA-seq, array-based methylation profiling, mass spectrometry, and other approaches to assess genomic, metabolomic, proteomic, and post-translational modification patterns in 99 untreated GBM tumors and 10 normal, non-matched brain samples.

The findings, pointed to four GBM immune subtypes for the nervous system cancer, including an immune subtype enriched for tumors with IDH mutations. The team identified key phosphorylation events (e.g., phosphorylated PTPN11 and PLCG1) as potential switches mediating oncogenic pathway activation, as well as potential targets for EGFR-, TP53-, and RB1-altered tumors. Immune subtypes with distinct immune cell types were discovered using bulk omics methodologies, validated by snRNA-seq, and correlated with specific expression and histone acetylation patterns. Histone H2B acetylation in classical-like and immune-low GBM is driven largely by bromodomains (BRDs), CREB binding protein (CREBBP), and Histone acetyltransferase p300 (EP300). Integrated metabolomic and proteomic data identified specific lipid distributions across subtypes and distinct global metabolic changes in IDH-mutated tumors.

One of the immune subgroups was marked by a dearth of T cells and high levels of infiltrating macrophage immune cells, for example, while another immune subtype was enriched for T lymphocyte and natural killer cell levels and IDH mutations, but was poor in macrophage-microglia immune cell infiltration. Yet another immune subtype had middling macrophage levels, the team noted, and a fourth immune subtype lacked significant levels of immune cells in general.

The authors concluded that rapid advancement of single-cell genomics and proteomics technologies will facilitate deeper analyses of GBM heterogeneity and tumor microenvironment interactions. They hope these advances will improve patient stratification for clinical trials and lead, ultimately, to personalized treatments. The study was published on February 11, 2021 in the journal Cancer Cell.

Related Links:
Washington University in St. Louis

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.