We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

BECKMAN COULTER, INC.

Beckman Coulter develops, manufactures and markets laboratory systems, reagents, centrifugation, lab automation, elec... read more Featured Products: More products

Download Mobile App




Specific RUNX1 Mutations Cause Different Disease Types

By LabMedica International staff writers
Posted on 28 Jan 2021
Print article
Image: The Cyan ADP flow cytometer (Photo courtesy of Beckman Coulter).
Image: The Cyan ADP flow cytometer (Photo courtesy of Beckman Coulter).
Mutations of the hematopoietic master regulator RUNX1 are associated with acute myeloid leukemia, familial platelet disorder and other hematological malignancies whose phenotypes and prognoses depend upon the class of the RUNX1 mutation.

RUNX1 mutations can occur within the DNA-binding domain (DBD), the transactivation domain (TAD), or are a result of translocations resulting in the generation of fusion proteins. The biochemical behavior of these oncoproteins and their ability to cause unique diseases has been well studied, but the genomic basis of their differential action is unknown.

Cancer and Genomic Scientists at the University of Birmingham (Birmingham, UK;) compared integrated phenotypic, transcriptomic, and genomic data from cells expressing four types of RUNX1 oncoproteins in an inducible fashion during blood development from embryonic stem cells. The team utilized a well-characterized embryonic stem cell (ESC) differentiation system, which recapitulates the different steps of hematopoietic specification of blood cells from haemogenic endothelium (HE) and allows inducible expression of oncoproteins.

The scientists differentiated ESCs were purified by magnetic cell sorting, using biotin-conjugated CD309 antibody, anti-biotin microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany). Cell populations were identified and sorted and analyzed on a Beckman Coulter analyzer (Beckman Coulter, Pasadena, CA, USA) or sorted on a FACS Aria cell sorter (BD Bioscience, Franklin Lakes, NJ, USA). The team employed other techniques in their study, including CFU assays, Western Blotting, RNA-seq, ATAC-seq and ChIP-seq. Immunocytochemistry slides were visualized using a Zeiss LSM 780 equipped with a Quasar spectral (GaAsP) detection system (Zeiss, Jena, Germany).

The team showed that how each class of mutant RUNX1 deregulates endogenous RUNX1 function by a different mechanism, leading to specific alterations in developmentally controlled transcription factor binding and chromatin programming. The result is distinct perturbations in the trajectories of gene regulatory network changes underlying blood cell development which are consistent with the nature of the final disease phenotype. Some types of RUNX1 mutations directly changed how other genes behaved in blood cells, not all did. In particular, the mutations that are inherited through families do not immediately affect the cells but instead change the roadmap they follow to become other cell types, such as platelets and white blood cells.

Constanze Bonifer, PhD, a Professor of Experimental Haematology, and lead author of the study, said, “The most important results we found came from studying mutations that run in families which predisposes their members to diseases such as Familial Platelet Disorder (FPD) and Acute Myeloid Leukemia (AML). AML is an aggressive cancer of the white blood cells, whereas in FPD, the ability to produce blood clots which is required to stop bleeding is impaired. Prior to this study, it was completely unclear why changes in just one gene cause so many different diseases.”

The team concluded that their results demonstrate that different classes of mutant RUNX1 proteins use unique multifactorial mechanisms to cause disease and so development of novel treatments will require an individual approach. The study was published on January 4, 2021 in the journal Life Science Alliance.

Related Links:
University of Birmingham
Miltenyi Biotec
Beckman Coulter
BD Bioscience
Zeiss


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.