We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App





Smartphone-Read Ultrasensitive and Quantitative Saliva Test for COVID-19 Provides Results within 15 Minutes

By LabMedica International staff writers
Posted on 14 Dec 2020
Print article
Illustration
Illustration
A portable saliva-based smartphone platform offers an ultrasensitive yet accessible approach to COVID-19 testing by providing results within 15 minutes without the resource-intensive laboratory tests the current gold standard requires.

In a new study that tested the approach in 12 people infected with COVID-19 and six healthy controls, the researchers demonstrated that this technique, which pairs a fluorescence microscope readout device with a smartphone to determine viral load from a CRISPR/Cas12a assay, works as effectively as the well-established quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) method.

Most COVID-19 tests currently require swabbing the upper part of the throat behind the nose - an uncomfortable process that requires medical professionals in full protective gear to collect samples in airborne infection isolation rooms before running RT-qPCR tests. However, recent studies have found that SARS-CoV-2 may be equally present in the nasopharynx and the saliva during early infection, suggesting saliva-based COVID-19 tests could enable comparably reliable but simpler, safer testing.

To develop a widely accessible platform for saliva-based testing, the researchers built a prototype assay chip that uses the CRISPR/Cas12a enzyme to enhance an amplified viral RNA target's signal within a saliva sample. They integrated the chip into a smartphone-based fluorescence microscope readout device, which captures and analyzes images to determine whether the virus is present above a threshold concentration. The researchers used this design to analyze saliva from 12 patients with COVID-19 and 6 healthy controls, finding that the approach successfully distinguished between patients with and without the virus.

Additionally, the researchers compared nasal and saliva swabs from non-human primates before and after infection. They found higher SARS-CoV-2 RNA levels in the saliva swabs, further suggesting that saliva may provide a robust means of diagnosis after infection. The researchers anticipate that a future version of the chip used in this technique could contain pre-loaded reagents and sample controls, and a custom smartphone app could enable secure, wireless test data reporting to support telehealth efforts.

"We believe this smartphone platform, a similar future application, offers the potential to rapidly expand COVID-19 screening capacity, and potentially simplify the verification of contact tracing, to improve local containment and inform regional disease control efforts," the authors wrote.



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
SARS-CoV-2 Reactive & Non-Reactive Controls
Qnostics SARS-CoV-2 Typing

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.