We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Artificial Enzyme Increases Sensitivity of Alzheimer's Disease Immunoassay

By LabMedica International staff writers
Posted on 03 Nov 2020
Print article
Image: A molecular-scale illustration of single-atom nanoyzmes and their application as a signal labels in an immunoassay. On the left, illustration of a protein biomarker being captured and detected in an immunoassay (Photo courtesy of Washington State University)
Image: A molecular-scale illustration of single-atom nanoyzmes and their application as a signal labels in an immunoassay. On the left, illustration of a protein biomarker being captured and detected in an immunoassay (Photo courtesy of Washington State University)
A novel modification made to the classic ELISA method for detecting the Alzheimer's disease biomarker amyloid beta 1-40 increased the sensitivity of the test by more than a factor of 10.

The ELISA method employing the natural enzyme horseradish peroxidase (HRP) has not been readily adapted for detecting the beta-amyloid proteins of Alzheimer's disease, as the concentrations of these proteins in the blood are too small.

To counter this problem, investigators at Washington State University (Pullman, USA) increased the sensitivity of the ELISA method by incorporating an artificial enzyme in place of HRP.

Single-atom nanozymes (SANs) possess unique features of maximum atomic utilization and present highly assembled enzyme-like structure and remarkable enzyme-like activity. By introducing SANs into the immunoassay, limitations of ELISA such as low stability of horseradish peroxidase (HRP) can be well addressed, thereby improving the performance of the immunoassays.

In in the current study, the investigators developed novel Fe-N-C single-atom nanozymes (Fe-Nx SANs) derived from Fe-doped polypyrrole (PPy) nanotubes and substituted the enzymes in a commercial ELISA kit in order to enhance the detection sensitivity of amyloid beta 1-40.

Results revealed that the Fe-Nx SANs contained high density of single-atom active sites and comparable enzyme-like properties as HRP, owing to the maximized utilization of Fe atoms and their abundant active sites, which could mimic natural metalloproteases structures. Furthermore, the SAN-linked immunosorbent assay (SAN-LISA) demonstrated the ultralow limit of detection (LOD) of 0.88 picograms per milliliter, better than 10 times more sensitive than that of the commercial ELISA (9.98 picograms per milliliter).

"The nanozyme based on a single-atom catalyst that we created has a similar structure as a natural enzyme with remarkable enzyme-like activity and paved the way for detecting the Alzheimer's disease biomarker," said contributing author Dr. Dan Du, professor of mechanical and materials engineering at Washington State University. "The nanozyme was also more robust than natural enzymes, which can degrade in acidic environments or in high temperatures. It is also less expensive and could be stored for long periods of time."

The modified Alzheimer's disease biomarker assay was described in the October 19, 2020, online edition of the journal Research.

Related Links:
Washington State University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Pathology

view channel
Image: The device can serve as a sample pretreatment tool for cytological diagnosis of malignant effusions (Photo courtesy of Microsystems & Nanoengineering: Zhu, Z., Ren, H., Wu, D. et al.)

Microfluidic Device for Cancer Detection Precisely Separates Tumor Entities

Tumor cell clusters are increasingly recognized as crucial in cancer pathophysiology, with growing evidence of their increased resistance to treatment and higher metastatic potential compared to single tumor cells.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.