We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us


Produces reagents for medical laboratory diagnostics, including test systems for the determination of various antibod... read more Featured Products: More products

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
23 Jan 2021 - 27 Jan 2021
Virtual Venue
24 Feb 2021 - 28 Feb 2021
Virtual Venue

Methods for Automated Anti-Neutrophil Cytoplasmic Antibodies Compared

By LabMedica International staff writers
Posted on 21 Oct 2020
Print article
Image: The EUROPattern Microscope Live: Ultrafast fluorescence microscopy that automatically detects anti-neutrophil cytoplasmic antibodies (Photo courtesy of EUROIMMUN AG).
Image: The EUROPattern Microscope Live: Ultrafast fluorescence microscopy that automatically detects anti-neutrophil cytoplasmic antibodies (Photo courtesy of EUROIMMUN AG).
The detection of anti-neutrophil cytoplasmic antibodies (ANCA) by indirect immunofluorescence assays (IFA) is of diagnostic importance in vasculitis and some other inflammatory diseases.

Several laboratories use formaldehyde-fixed neutrophil granulocytes as an auxiliary substrate in addition to conventional ethanol fixation which is reported to be useful in differentiating between antinuclear antibody and ANCA and improves interpretation of patterns. Many, especially high throughput laboratories consider indirect immunofluorescence (IIF) methods cumbersome, labor intensive and time consuming.

A team of clinical scientists at the University of Debrecen (Debrecen, Hungary) collected serum samples from 570 individuals, whose referrals were suspicion of or follow-up for acute and chronic renal failure, ulcerative colitis, Crohn’s disease, systemic autoimmune diseases, vasculitis and autoimmune liver disorders. Five patients provided two samples.

Indirect immunofluorescence testing was performed using a reagent kit designed to be used with EUROPattern (EPa), EUROIMMUN’s computer-aided immunofluorescence microscope (Granulocyte Mosaic 13; EUROIMMUN AG, Lübeck, Germany). One reaction area on the microscope slide contains three biochips (2 x 2 mm, substrate coated cover slips), covered by ethanol- or formaldehyde-fixed human neutrophil granulocytes or granulocytes scattered on a HEp-2 cell layer, respectively. Fluorescein isothiocyanate labeled goat anti-human IgG was used as secondary antibody (conjugate), which was supplemented with Evans blue dye for red counterstaining of the cells.

Slides were processed manually and screening dilution of serum samples was 1:10. The automatic results and the digital images were presented to the user on a calibrated computer screen, who checked and validated the patterns. Finally, the slides were evaluated by means of traditional visual reading under an epifluorescence microscope (EUROStar II Plus, EUROIMMUN AG).

The team reported that agreement of discrimination between negative and non-negative samples was 86.1% comparing EPa and conventional reading, and it increased to 96.7% after on-screen user validation. Importantly, from the 334 samples classified as negative by EPa, 328 (98.2%) were also negative by conventional evaluation. Pattern recognition showed ‘moderate’ agreement between classical microscopic and EPa analysis and ‘very good’ agreement after user validation. Misclassification by EPa was dominantly due to the presence of anti-nuclear/cytoplasmic antibodies (incorrect pattern, 80/568) and the lower fluorescence cut-off of the automated microscope (false positives, 73/568).

The authors concluded that automated ANCA testing by EPa is a reliable alternative of classical microscopic evaluation, though classification of sera needs correction by trained personnel during on-screen validation. The study was published on September 28, 2020 in the journal Clinica Chimica Acta.

Print article


Molecular Diagnostics

view channel
Image: Schematic representation of Chiari malformation type 1; it involves the lower part of the cerebellum known as tonsils, but not the brain stem (Photo courtesy of Healthline).

Common Brain Malformation Traced to Its Genetic Roots

About one in 100 children has a common brain disorder called Chiari 1 malformation, but most of the time such children grow up normally and no one suspects a problem. However about one in 10 of those children,... Read more


view channel
Image: uPath HER2 Dual ISH image analysis for breast cancer (Photo courtesy of Roche)

Roche Launches Digital Pathology Image Analysis Algorithms for Precision Patient Diagnosis in Breast Cancer

Roche (Basel, Switzerland) has announced the CE-IVD launch of its automated digital pathology algorithms, uPath HER2 (4B5) image analysis and uPath Dual ISH image analysis for breast cancer to help determine... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.