We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Bacteriophage Analysis Technique Reveals Details of COVID-19’s Impact on the Immune System

By LabMedica International staff writers
Posted on 06 Oct 2020
Print article
Image: This illustration reveals the ultrastructural morphology exhibited by coronaviruses. Note the protein spikes that adorn the outer surface of the virus, which impart the look of a corona surrounding the virion, when viewed through an electron microscope (Photo courtesy of [U.S.] Centers for Disease Control and Prevention)
Image: This illustration reveals the ultrastructural morphology exhibited by coronaviruses. Note the protein spikes that adorn the outer surface of the virus, which impart the look of a corona surrounding the virion, when viewed through an electron microscope (Photo courtesy of [U.S.] Centers for Disease Control and Prevention)
An analytical technique that can determine which of more than 1,000 different viruses have infected a person, has been utilized for a detailed study of the SARS-CoV-2 (COVID-19) virus and its impact on the immune system.

Investigators at Harvard Medical School (Boston, MA, USA) worked with VirScan, a technology in which peptide-displaying bacteriophages were incubated with a single drop of patient’s blood. Antiviral antibodies in the blood bound to their target epitopes on the bacteriophages. Antibody bound bacteriophages were then captured. DNA sequencing of these bacteriophages indicated which viral peptides were bound to antibodies. In this way, an individual’s complete viral serological history, including both vaccination and infection, could be determined.

For the current study, the investigators used VirScan to analyze blood samples from 232 COVID-19 patients and 190 pre-COVID-19 era controls.

Results revealed over 800 epitopes (sites recognized by the immune system) in the SARS-CoV-2 proteome, including 10 epitopes likely recognized by neutralizing antibodies. Pre-existing antibodies in control samples recognized SARS-CoV-2 ORF1, while only COVID-19 patients primarily recognized spike and nucleoprotein. A machine learning model trained on VirScan data predicted SARS-CoV-2 exposure history with 99% sensitivity and 98% specificity.

Individuals with more severe COVID-19 exhibited stronger and broader SARS-CoV-2 responses, weaker antibody responses to prior infections, and higher incidence of CMV (Cytomegalovirus) and HSV-1 (Herpes simplex virus 1). Among hospitalized patients, males had greater SARS-CoV-2 antibody responses than females.

"This may be the deepest serological analysis of any virus in terms of resolution," said senior author Dr. Stephen Elledge, professor of genetics at Harvard Medical School. "We now understand much, much more about the antibodies generated in response to SARS-CoV-2 and how frequently they are made. The next question is, what do those antibodies do? We need to identify which antibodies have an inhibitory capacity or which, if any, may promote the virus and actually help it enter into immune cells."

"Our paper illuminates the landscape of antibody responses in COVID-19 patients," said Dr. Elledge. "Next, we need to identify the antibodies that bind these recurrently recognized epitopes to determine whether they are neutralizing antibodies or antibodies that might exacerbate patient outcomes. This could inform the production of improved diagnostics and vaccines for SARS-CoV-2."

The VirScan analysis of COVID-19 was published in the September 29, 2020, online edition of the journal Science.

Related Links:
Harvard Medical School

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.