We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

THERMO FISHER SCIENTIFIC

Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Two Simple Methods Prepare DNA Suitable For Digital PCR

By LabMedica International staff writers
Posted on 19 Aug 2020
Print article
Cells in wells of a 96 well-plate before (A) and after (B) lysis cell by Direct PCR (B1) and Chelex100 (B2) (Photo courtesy of University Hospital Hamburg‐Eppendorf).
Cells in wells of a 96 well-plate before (A) and after (B) lysis cell by Direct PCR (B1) and Chelex100 (B2) (Photo courtesy of University Hospital Hamburg‐Eppendorf).
Although DNA of high quality can be easily prepared from cultured cells with commercially available kits, many studies involve a large number of samples which increases the cost drastically.

In addition, a limited amount of each sample is often a challenge, for example, for studies using cells of primary cultures for testing multiple drugs at multiple concentrations in multiple replicates, and studies or diagnosis involving defined subpopulations of human immune cells.

Medical scientists at the University Hospital Hamburg‐Eppendorf (Hamburg, Germany) used cells from a primary culture derived from a benign plexiform neurofibroma, a melanoma cell line, and a human fibroblast line. The cells were seeded into wells of 96‐well plates with at different concentrations, each in three replicates. The plates were incubated overnight for the cells to attach the cultural surface and subjected to DNA extraction on the next day after checking the adhesive living cells under a microscope.
After removing the medium, the wells were washed twice with PBS. Subsequently, 70 μL of the Direct PCR lysis reagent (PeqLab, Erlangen, Germany) supplemented with 0.2 mg/mL fresh proteinase K together with 70μL water was added to each well containing adhesive living cells. Supernatants containing the extracted DNA were further purified by precipitation. The team also lysed cells using chelex100 powder (Bio-Rad, Hercules, CA, USA). Conventional polymerase chain reaction (PCR) was carried out using 2 µL out of the 10 µL DNA and a primer pair for an exon of the NF1 gene which is used for the routine genetic diagnosis in their laboratory.

The investigators reported that for 1,000 cells from one primary culture and two tumor cell lines, DNA was reproducible and obtained with recovery rate (obtained/expected amount of DNA) in the range of 50%‐90% as measured by the fluorometer dyes instrument Qubit (Thermo Fisher Scientific, Waltham, MA, USA). For digital PCR, more than 1,600 positive droplets were obtained for DNA from 1,000 cells using the Direct PCR method, corresponding to a yield efficiency of approximately 80%. Further reducing the number of cells down to 100 would be possible with 160 positive droplets expected. Both reagents are inexpensive at EUR 0.08/sample.

The authors concluded that the two methods were efficient; especially the Direct PCR reagent‐based method provides a simple and inexpensive method for preparing DNA suitable for digital PCR from small number of cells. The study was published on August 5, 2020 in the Journal of Clinical Laboratory Analysis.

Related Links:

University Hospital Hamburg‐Eppendorf
PeqLab
Bio-Rad
Thermo Fisher Scientific
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.