We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Immunogenomic Landscape of Hematological Malignancies Mapped

By LabMedica International staff writers
Posted on 20 Jul 2020
Print article
Image: The Immunogenomic Landscape of Hematological Malignancies (Photo courtesy of Helsinki University Hospital).
Image: The Immunogenomic Landscape of Hematological Malignancies (Photo courtesy of Helsinki University Hospital).
The reaction of the body's immune system against cancer can be thought of as a cycle. Cancer cells contain proteins that differ from proteins in other tissue. Their components, known as antigens, have to be presented to the T cells of the immune system by the cancer cells.

When they identify antigens, T cells become active and start to destroy cancer cells, which make the latter release more antigens, enhancing the immune response further. In addition to T cells, natural killer (NK) cells have the ability to destroy cells. In immunotherapies, the immune system is therapeutically activated by boosting different stages of the cycle.

A large team of medical scientists collaborating with the Helsinki University Hospital (Helsinki, Finland) integrated over 8,000 transcriptomes and 2,000 samples with multilevel genomics of hematological cancers to investigate how immunological features are linked to cancer subtypes, genetic and epigenetic alterations, and patient survival, and validated key findings. They mapped the immune landscape of hematological malignancies in a dataset covering more than 10,000 patients to identify drug targets and patient groups which could potentially benefit from immunotherapies.

The team reported that infiltration of cytotoxic lymphocytes was associated with TP53 and myelodysplasia-related changes in acute myeloid leukemia, and activated B cell-like phenotype and interferon-γ response in lymphoma. CIITA methylation regulating antigen presentation, cancer type-specific immune checkpoints, such as V-domain Ig suppressor of T cell activation (VISTA) in myeloid malignancies, and variation in cancer antigen expression further contributed to immune heterogeneity and predicted survival.

The investigators found that in certain subtypes of acute myeloid leukemia, DNA methylation had epigenetically silenced antigen presentation. A drug that inhibits DNA methylation restored the expression of antigen-presenting proteins in laboratory tests. As the drug is already used to treat acute myeloid leukaemia, it could potentially increase the efficiency of immunotherapies through combined use.

Satu Mustjoki, MD, PhD, a Professor of Translational Hematology and senior author of the study, said, “The extensive survey of the immunogenomic features of hematological malignancies carried out in the study helps scientists and doctors target immunotherapies at the patient groups that gain the most benefit as well as understand the factors that have a potential impact on the efficacy of therapies.”

The authors concluded that their study provided a resource linking immunology with cancer subtypes and genomics in hematological malignancies. The study was published on July 9, 2020 in the journal Cancer Cell.

Related Links:
Helsinki University Hospital

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.