We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Rare Kidney Cancer Marked by Molecular Features

By LabMedica International staff writers
Posted on 19 May 2020
Print article
Image: Schematic diagram of Molecular Characterization Identifying Distinct Molecular Hallmarks of Renal Medullary Carcinoma (Photo courtesy of University of Texas MD Anderson Cancer Center).
Image: Schematic diagram of Molecular Characterization Identifying Distinct Molecular Hallmarks of Renal Medullary Carcinoma (Photo courtesy of University of Texas MD Anderson Cancer Center).
Renal medullary carcinoma is a rare cancer of the kidney that predominantly afflicts young people of African descent who carry the sickle cell trait, sickle cell disease, or other sickle hemoglobinopathies that can cause sickling of the red blood cells.

Rare renal medullary carcinoma kidney cancers are marked by frequent focal chromosomal changes and other mutations that may inform future treatment strategies and renal medullary carcinoma (RMC) is a highly lethal malignancy. Men are twice as likely to be affected by RMC as women, and about 70% of RMC cases start from the right kidney.

A large team of medical scientists from the University of Texas MD Anderson Cancer Center (Houston, TX, USA), and other centers in the USA and France used a combination of exome sequencing, RNA sequencing, fluorescence in situ hybridization (FISH), and multiplex ligation-dependent probe amplification (MLPA) analyses, and assessed 31 untreated renal medullary carcinoma tumors and 15 matched normal samples, identifying several recurrent copy number changes in the kidney cancers, from chromosome 8 gains and chromosome 22 losses to upregulated Notch signaling- and innate immune-related pathways.

In general, the team's results revealed recurrent copy number changes falling at focal chromosomal sites, and chromosome sites prone to structural changes in individuals with sickle cell blood traits. Such findings might help to explain why renal medullary carcinoma diagnoses are more frequent in individuals with the sickle cell trait, the authors noted. The kidney cancer is also over-represented in younger individuals with African ancestry.

In contrast to the low number of focal copy number alterations (CNAs) found in malignant rhabdoid tumors (MRT) and atypical teratoid/rhabdoid tumors (ATRT), the authors said they found that renal medullary carcinoma harbors a much more complex genome with high levels of focal CNAs. They also found that the tumors tended to have enhanced DNA replication stress related to SMARCB1 mutations. The replication stress not only contributed to the focal copy number changes, the investigators suggested, but also seemed to increase activity by the MYC signaling pathway, producing tumors predicted to be more apt to respond to DNA-damage repair-targeting drugs.

The authors concluded that they had identified the importance of SMARCB1 loss as a major recurrent genetic alteration in renal medullary carcinoma and found that it confers replication stress-induced vulnerabilities that can be therapeutically targeted. These results highlight a potential opportunity to utilize agents targeting replication stress pathways alone or in combination with other therapies to yield deep and durable therapeutic responses. The study was published on April 30, 2020 in the journal Cancer Cell.

Related Links:
University of Texas MD Anderson Cancer Center

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.