We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Liquid Biopsy Assays Target Mutations and Improves Recurrence Prediction

By LabMedica International staff writers
Posted on 25 Mar 2020
Print article
Image: Circulating tumor DNA (ctDNA) assays can be used for the sensitive detection of minimal residual disease in patients treated for early-stage breast cancer (Photo courtesy of Natera).
Image: Circulating tumor DNA (ctDNA) assays can be used for the sensitive detection of minimal residual disease in patients treated for early-stage breast cancer (Photo courtesy of Natera).
The concept of creating bespoke or personalized mutation panels to use for cancer recurrence detection and residual disease monitoring is not new at this point. Scientists began piloting these methods several years ago, initially tracking single mutations and then collections of alterations derived from tumor sequencing data.

A new method has been developed to monitor individualized panels of up to hundreds of different cancer mutations in blood samples, and in a cohort of early breast cancer patients, this assay could detect cancer DNA in patient blood samples collected an average of 18 months, and up to three years, before metastatic recurrence was diagnosed.

A multi-disciplinary team of scientists working with the Dana-Farber Cancer Institute (Boston, MA, USA) developed a test for tracking hundreds of patient-specific mutations to detect minimal residual disease (MRD) with a 1,000-fold lower error rate than conventional sequencing. The team retrospectively designed custom liquid biopsy assays for a cohort of 142 early breast cancer patients who had banked blood and tissue samples and had been diagnosed, treated, and monitored for disease recurrence over a 13-year period.

Starting with tumor tissue exome sequencing data, investigators defined personalized panels of genetic mutations for each patient that they would then try to track in blood samples. The largest panel they were able to generate was 346 mutations, although the range was large, down to just two mutations for another individual, and about 57 on average across the cohort. Notably, the liquid biopsy picked up signs of cancer in banked samples taken a year after surgery for six patients, all of whom were later diagnosed with metastatic recurrence, on average about 18 months, but in one case a full three years later.

Twenty-six other patients tested negative in their blood samples one year after surgery but still developed recurrence. Overall, though, the cancer in these patients tended to reappear on a much longer average timeline, as many as 10 years later. It is possible that for these longer-term recurrences, there may not be any circulating tumor DNA (ctDNA) signals present at this early one-year testing time-point. Clinical sensitivity was 13/16 (81%) in newly diagnosed metastatic breast cancer (MBC), 7/30 (23%) at post-op and 6/32 (19%) at one year in early-stage disease, and highest in patients with the most tumor mutations available to track. MRD detection at one year was strongly associated with distant recurrence (hazard ratio [HR] = 20.8).

Heather A. Parsons, MD, MPH, a medical oncologist and co-first author of the study, said, “Our goal is to be able to turn patients who would have developed metastatic disease into patients who won't. In the future, if we can find those patients with residual cancer early enough, determine whether they would benefit from another course of therapy, and give them an effective additional treatment, we could potentially change the course of their disease.” The study was published on March 13, 2020 in the journal Clinical Cancer Research.

Related Links:
Dana-Farber Cancer Institute

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.