We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Blood-Based MicroRNA Signatures Distinguishes Individuals with Lung Cancer

By LabMedica International staff writers
Posted on 16 Mar 2020
Print article
Image: Histopathology showing the key features of small cell lung carcinoma (SCLC): Nuclear molding; salt and pepper chromatin; and scant cytoplasm (Photo courtesy of Nephron).
Image: Histopathology showing the key features of small cell lung carcinoma (SCLC): Nuclear molding; salt and pepper chromatin; and scant cytoplasm (Photo courtesy of Nephron).
The overall low survival rate of patients with lung cancer calls for improved detection tools to enable better treatment options and improved patient outcomes. Lung cancer affects about 228,000 people a year in the USA and has a five-year survival rate just shy of 20%.

Multivariable molecular signatures, such as blood-borne microRNA (miRNA) signatures, may have high rates of sensitivity and specificity but require additional studies with large cohorts and standardized measurements to confirm the generalizability of miRNA signatures. MicroRNA signatures appear to distinguish individuals with lung cancer from those with other lung diseases as well as from those without a lung condition.

A large team of scientists collaborating with Saarland University (Saarbrücken, Germany) investigated the use of blood-borne miRNAs as potential circulating markers for detecting lung cancer in an extended cohort of symptomatic patients and control participants. Clinical diagnoses were obtained for 3,046 patients (606 patients with non–small cell and small cell lung cancer, 593 patients with non-tumor lung diseases, 883 patients with diseases not affecting the lung, and 964 unaffected control participants). The team calculated the sensitivity and specificity of liquid biopsy using miRNA signatures for detection of lung cancer. Blood samples collected from the participants underwent genome-wide miRNA profiling using human miRNA microarrays.

The investigators split their cohort into equal-sized training and validation sets. Within the training set, they uncovered a 15-miRNA signature that could distinguish patients with lung cancer from all other individuals. In the validation set, this signature could diagnose lung cancer with an accuracy of 91.4%, a sensitivity of 82.8%, and a specificity of 93.5%. Similarly, they uncovered a 14-miRNA signature that could distinguish patients with lung cancer from those with a non-tumor lung disease with 92.5% accuracy, 96.4% sensitivity, and 88.6% specificity. A third signature of 14 miRNAs could distinguish patients with early-stage lung cancer from all other patients with an accuracy of 95.9%, a sensitivity of 76.3%, and a specificity of 97.5%. Although the team focused on general lung cancer biomarkers, they noted that the miRNA hsa-miR-30a-5p was best able to tell small cell lung cancer and non-small cell lung cancer apart.

The authors concluded that their study suggested that the identified patterns of miRNAs may be used as a component of a minimally invasive lung cancer test, complementing imaging, sputum cytology, and biopsy tests. The study was published on March 5, 2020 in the journal JAMA Oncology.

Related Links:
Saarland University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Pathology

view channel
Image: The device can serve as a sample pretreatment tool for cytological diagnosis of malignant effusions (Photo courtesy of Microsystems & Nanoengineering: Zhu, Z., Ren, H., Wu, D. et al.)

Microfluidic Device for Cancer Detection Precisely Separates Tumor Entities

Tumor cell clusters are increasingly recognized as crucial in cancer pathophysiology, with growing evidence of their increased resistance to treatment and higher metastatic potential compared to single tumor cells.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.