We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

THERMO FISHER SCIENTIFIC

Thermo Fisher Scientific provides analytical instruments, lab equipment, specialty diagnostics, reagents and integrat... read more Featured Products: More products

Download Mobile App




Real-Time PCR Developed for Eumycetoma Diagnosis

By LabMedica International staff writers
Posted on 06 Feb 2020
Print article
Image: Culture showing the typical brown diffusable pigment in the agar (inset) and phialides of Madurella mycetomatis (Photo courtesy of University of Adelaide).
Image: Culture showing the typical brown diffusable pigment in the agar (inset) and phialides of Madurella mycetomatis (Photo courtesy of University of Adelaide).
Mycetoma, a progressive and disfiguring disease, is one of the neglected tropical diseases, caused by both bacteria and fungi. Eumycetoma is the fungal type and mainly caused by species of the genus Madurella.

There are four species of Madurella that are phenotypically similar and cause an invariable clinical picture, but differ markedly in their susceptibility to antifungal drugs, and epidemiological pattern. Therefore, specific identification is required for optimal management of Madurella infection and to reveal proper epidemiology of the species.

Scientists from several countries cooperating with the Westerdijk Fungal Biodiversity Institute (Utrecht, The Netherlands) developed and standardized a novel multiplex real-time polymerase chain reaction (PCR) targeting the four Madurella species. In total 47 strains were included in this study, of which 26 belonged to the genus Madurella, nine to other members of the family Chaetomiaceae, nine to black-grain mycetoma species in the order Pleosporales, two to Aspergillus and one Rhizopus species. Thirteen clinical samples were obtained from patients seen at the Mycetoma Research Centre (Khartoum, Sudan)

Strains were grown on 2% Malt Yeast Extract agar (MEA) or Sabouraud Glucose Agar (SGA) plates and incubated for two weeks and mycelia were harvested and DNA was extracted. Purity of extracted DNA was assessed using NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Wilmington, USA) and on 1% agarose gels. Polymerase chain reactions (PCR) were performed using an ABI 7500 fast PCR device (Applied Biosystems, Foster City, CA, USA).

The evaluation of the assay using reference strains of the target and non-target species resulted in 100% specificity, high analytical reproducibility, and a lowest detection limit of 3 pg target DNA. The accuracy of the real-time PCR was further assessed using biopsies from eumycetoma suspected patients. Unlike culture and DNA sequencing as gold standard diagnostic methods, the real-time PCR yielded accurate diagnosis with specific identification of the causative species in three hours compared to one or two weeks required for culture.

The authors concluded that they had developed a rapid and accurate diagnostic assay that is able to simultaneously identify M. fahalii, M. mycetomatis, M. pseudomycetomatis, and M. tropicana. The assay can be used in both culture-dependent and -independent manners. The novel method reduces turnaround time as well as labor intensity and high costs associated with current reference methods. The study was published on January 15, 2020 in the journal PLOS Neglected Tropical Diseases.


Related Links:
Westerdijk Fungal Biodiversity Institute
Mycetoma Research Centre
Thermo Fisher Scientific
Applied Biosystems


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.