We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




Nanopore Sequencing Rapidly Diagnoses Gut Condition in Preterm Infants

By LabMedica International staff writers
Posted on 03 Jan 2020
Print article
Image: Flongle is an adapter (flow cell dongle) for the MinION or GridION that enables direct, real-time DNA or RNA sequencing on smaller, single-use flow cells (Photo courtesy of Oxford Nanopore Technologies).
Image: Flongle is an adapter (flow cell dongle) for the MinION or GridION that enables direct, real-time DNA or RNA sequencing on smaller, single-use flow cells (Photo courtesy of Oxford Nanopore Technologies).
The culture-independent, sensitive, data-rich nature of metagenomic sequencing, combined with powerful bioinformatics tools, have allowed scientists to differentiate patient groups from healthy individuals based on their microbial profiles.

Metagenomics also allows the identification of functional traits, for example, antibiotic resistance genes, which are important in light of the antimicrobial resistance (AMR) threat. Optimization of metagenomic methodologies and bioinformatics tools could allow the identification of at-risk individuals, profiling of infectious agents and tailoring of treatments.

Scientists at the Earlham Institute (Norwich, UK) and their associates used the MinION platform (Oxford Nanopore Technologies, Oxford Science Park, UK) coupled to the Institute’s NanoOK RT software package to perform shotgun metagenomic sequencing and profile mock communities and fecal samples from healthy and ill preterm infants. The metagenomic nanopore sequencing was used to rapidly diagnose preterm infants with suspected necrotizing enterocolitis (NEC), a life-threatening gut condition, identifying pathogens and antimicrobial resistance genes in the gut microbiome within a few hours.

The Nanopore data reliably classified a 20-species mock community and captured the diversity of the immature gut microbiota over time and in response to interventions such as probiotic supplementation, antibiotic treatment or episodes of suspected sepsis. The team also performed rapid real-time runs to assess gut-associated microbial communities in critically ill and healthy infants, facilitated by NanoOK RT software package, which analyzed sequences as they were generated. The scientists compared their results with Illumina sequencing (Illumina, San Diego, CA, USA).

The team’s pipeline reliably identified pathogenic bacteria (that is, Klebsiella pneumoniae and Enterobacter cloacae) and their corresponding antimicrobial resistance gene profiles within as little as one hour of sequencing. Results were confirmed using pathogen isolation, whole-genome sequencing and antibiotic susceptibility testing, as well as mock communities and clinical samples with known antimicrobial resistance genes.

Lindsay J. Hall, PhD, a microbiologist and a senior author of the study, said, “The improvements via nanopore sequencing are the rapid nature and specificity of the test. This is very useful with very ill babies that need to be treated as quickly as possible, as well as providing key info for the clinician to treat with antibiotics likely to kill the bacteria. Current tests take much longer and might not catch all types of antibiotic resistance.”

The authors concluded that their results demonstrate that MinION (including cost-effective Flongle flow cells) with NanoOK RT can process metagenomic samples to a rich dataset in less than five hours, which creates a platform for future studies aimed at developing these tools and approaches in clinical settings with a focus on providing tailored patient antimicrobial treatment options. The study was published on December 16, 2019 in the journal Nature Microbiology.

Related Links:
Earlham Institute
Oxford Nanopore Technologies
Illumina


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.