We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Extrachromosomal Circular DNA Drives Oncogenic Genome Remodeling in Neuroblastoma

By LabMedica International staff writers
Posted on 02 Jan 2020
Print article
Image: Scanning electron micrograph of inside the nucleus of a cancer cell, chromosomes are indicated by blue arrows and circular extrachromosomal DNA are indicated by orange arrows (Photo courtesy of Paul S. Mischel, MD, UC San Diego)
Image: Scanning electron micrograph of inside the nucleus of a cancer cell, chromosomes are indicated by blue arrows and circular extrachromosomal DNA are indicated by orange arrows (Photo courtesy of Paul S. Mischel, MD, UC San Diego)
Circularized DNA falling outside of linear chromosomes may serve as a recurrent source of somatic rearrangements in neuroblastoma, a pediatric cancer affecting immature cells in the sympathetic nervous system.

While past studies have pointed to a role for circularized, extrachromosomal MYCN oncogene sequences in neuroblastoma, the full suite and the frequency of somatic mutations involving small or large stretches of circularized extrachromosomal DNA amplifications had not been fully explored.

An international team of scientists collaborating with those at Charité-Universitätsmedizin Berlin (Berlin, Germany) profiled matched tumor and normal blood samples from 93 neuroblastoma patients using whole-genome sequencing and an algorithm that uncovers circularized DNA based on paired read orientation, uncovering preliminary evidence for complex and relatively frequent extrachromosomal DNAs (ecDNAs) in neuroblastoma.

The team to take a closer look at these sequences using a modified version of circle sequencing (Circle-seq) in 21 of the neuroblastoma tumors, making it possible to enrich for circularized DNA. The circularized sequences were mapped back to their original sites in the genome using additional long-read and single-molecule real-time sequences, the investigators explained, and they validated candidate DNA circles with polymerase chain reaction (PCR) and Sanger sequencing.

Together, these approaches uncovered almost 5,700 small extrachromosomal circular DNAs per tumor, on average, and an average of 0.82 large, copy number-amplified extrachromosomal circular DNA sequences. Even so, the team's follow-up analyses, including RNA sequencing experiments, indicated that rearrangements stemming from extrachromosomal circular DNA from MYCN and other genes may be a recurrent and ongoing source of new mutations through a multi-hit model in neuroblastoma.

The authors concluded that they had demonstrated that the majority of genomic rearrangements in neuroblastoma involve circular DNA, challenging the current understanding about cancer genome remodeling. They envision that their findings extend to other cancers and that further detailed analyses of circle-derived rearrangements will shed new insights into our understanding of cancer genome remodeling. The study was published on December 16, 2019 in the journal Nature Genetics.

Related Links:
Charité-Universitätsmedizin Berlin

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.