We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

New Blood Test Helps Detect Brain Injury in Minutes

By LabMedica International staff writers
Posted on 11 Sep 2019
Print article
Image: The i-STAT Alinity system integrates with-patient testing directly into the patient-care pathway, accelerating time to treatment, improving quality and increasing access to care (Photo courtesy of Abbott).
Image: The i-STAT Alinity system integrates with-patient testing directly into the patient-care pathway, accelerating time to treatment, improving quality and increasing access to care (Photo courtesy of Abbott).
After traumatic brain injury (TBI), plasma concentration of glial fibrillary acidic protein (GFAP) correlates with intracranial injury visible on computerized axial tomography (CT) scan. Some patients with suspected TBI with normal CT findings show pathology on magnetic resonance imaging (MRI).

Recently scientists have found that a handheld blood analyzer could help detect brain injury within 15 minutes using a commercial system that measures GFAP and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) proteins from the brain that are released into the blood after a brain injury, They assessed the discriminative ability of GFAP to identify MRI abnormalities in patients with normal CT findings.

Neurologists at the University of California at San Francisco (San Francisco, CA, USA) and their associates enrolled patients with TBI who had a clinically indicated head CT scan within 24 hours of injury at 18 level 1 trauma centers in the USA. For this analysis, they included patients with normal CT findings (Glasgow Coma Scale score 13–15) who consented to venipuncture within 24 hours post injury and who had a MRI scan 7–18 days post injury. They compared MRI findings in these patients with those of orthopedic trauma controls and healthy controls recruited from the study sites.

Plasma GFAP concentrations (pg/mL) were measured using a prototype assay on a point-of-care platform, the hand-held blood analyzer, the i-STAT Alinity system. The scientists used receiver operating characteristic (ROC) analysis to evaluate the discriminative ability of GFAP for positive MRI scans in patients with negative CT scans over 24 hours (time between injury and venipuncture). The primary outcome was the area under the ROC curve (AUC) for GFAP in patients with CT-negative and MRI-positive findings versus patients with CT-negative and MRI-negative findings within 24 hours of injury.

The team recruited between February 26, 2014, and June 15, 2018, 450 patients with normal head CT scans (of whom 330 had negative MRI scans and 120 had positive MRI scans), 122 orthopedic trauma controls, and 209 healthy controls. AUC for GFAP in patients with CT-negative and MRI-positive findings versus patients with CT-negative and MRI-negative findings was 0·777 over 24 hours. Median plasma GFAP concentration was highest in patients with CT-negative and MRI-positive findings (414.4 pg/mL), followed by patients with CT-negative and MRI-negative findings (74.0 pg/mL), orthopedic trauma controls (13.1 pg/mL), and healthy controls (8.0 pg/mL, all comparisons between patients with CT-negative MRI-positive findings and other groups.

The authors concluded that analysis of blood GFAP concentrations using prototype assays on a point-of-care platform within 24 hours of injury might improve detection of TBI and identify patients who might need subsequent MRI and follow-up. The study was published on August 23, 2019, in the journal The Lancet Neurology.

Related Links:
University of California at San Francisco

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.