We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Mutations Linked to Familial Pancreatic Cancer Identified

By LabMedica International staff writers
Posted on 28 Aug 2019
Print article
Image: A histopathology of pancreatic cancer; Scientists studying a highly cancer-prone family have identified a rare, inherited gene mutation that dramatically raises the lifetime risk of pancreatic and other cancers (Photo courtesy of the Dana-Farber Cancer Institute).
Image: A histopathology of pancreatic cancer; Scientists studying a highly cancer-prone family have identified a rare, inherited gene mutation that dramatically raises the lifetime risk of pancreatic and other cancers (Photo courtesy of the Dana-Farber Cancer Institute).
Pancreatic ductal adenocarcinoma is an aggressive cancer with limited treatment options. Approximately 10% of cases exhibit familial predisposition, but causative genes are not known in most families.

Pancreatic cancer is one of the deadliest cancers with limited treatment options. It typically comes with an especially poor prognosis due to its lack of symptoms until advanced stages and its ability to resist many anticancer therapies. Identifying genes involved in its development may lead to earlier diagnoses and improved treatments.

A team of scientists working with the Massachusetts General Hospital (Boston, MA, USA) performed whole-genome sequence analysis in a family with multiple cases of pancreatic ductal adenocarcinoma and identify a germline truncating mutation in the member of the RAS oncogene family-like 3 (RABL3) gene. Transcriptomic and mass spectrometry approaches implicate RABL3 in RAS pathway regulation and identify an interaction with RAP1GDS1 (SmgGDS), a chaperone regulating prenylation of RAS GTPases.

The truncated mutant RABL3 protein accelerates KRAS prenylation and requires RAS proteins to promote cell proliferation. Finally, evidence in patient cohorts with developmental disorders implicates germline RABL3 mutations in RASopathy syndromes. The studies identified RABL3 mutations as a target for genetic testing in cancer families and uncover a mechanism for dysregulated RAS activity in development and cancer.

Sahar Nissim, MD, PhD, a cancer geneticist and gastroenterologist and lead author of the study, said, “More broadly, this work highlights the power of studying and understanding rare family syndromes: from just one family, we may gain precious clues to why pancreatic cancer happens, how we may prevent it or catch it earlier, and how we may treat it more effectively.” The study was published on August 12, 2019, in the journal Nature Genetics.

Related Links:
Massachusetts General Hospital

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.